image/svg+xml XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values Instruction Operand Encoding Description Performs a bitwise logical XOR of the two, four or eight packed double-precision floating-point values from the first source operand and the second source operand, and stores the result in the destination operand. EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand can be a ZMM register or a vector memory location. The destination operand is a ZMM register conditionally updated with writemask k1. VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register (conditionally updated with writemask k1 in case of EVEX). The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed. VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register (conditionally updated with writemask k1 in case of EVEX). The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed. 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti- nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding register destination are unmodified. Opcode/ Instruction Op / En 64/32 bit Mode Support CPUID Feature Flag Description 66 0F 57/r XORPD xmm1, xmm2/m128 AV/VSSE2Return the bitwise logical XOR of packed double- precision floating-point values in xmm1 and xmm2/mem. VEX.128.66.0F.WIG 57 /r VXORPD xmm1,xmm2, xmm3/m128 BV/VAVXReturn the bitwise logical XOR of packed double- precision floating-point values in xmm2 and xmm3/mem. VEX.256.66.0F.WIG 57 /r VXORPD ymm1, ymm2, ymm3/m256 BV/VAVXReturn the bitwise logical XOR of packed double- precision floating-point values in ymm2 and ymm3/mem. EVEX.128.66.0F.W1 57 /r VXORPD xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcst CV/VAVX512VL AVX512DQ Return the bitwise logical XOR of packed double- precision floating-point values in xmm2 and xmm3/m128/m64bcst subject to writemask k1. EVEX.256.66.0F.W1 57 /r VXORPD ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst CV/VAVX512VL AVX512DQ Return the bitwise logical XOR of packed double- precision floating-point values in ymm2 and ymm3/m256/m64bcst subject to writemask k1. EVEX.512.66.0F.W1 57 /r VXORPD zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst CV/VAVX512DQReturn the bitwise logical XOR of packed double- precision floating-point values in zmm2 and zmm3/m512/m64bcst subject to writemask k1. Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (r, w)ModRM:r/m (r)NANA BNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)NA CFullModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NA image/svg+xml Operation VXORPD (EVEX encoded versions) (KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN IF (EVEX.b == 1) AND (SRC2 *is memory*) THEN DEST[i+63:i] := SRC1[i+63:i] BITWISE XOR SRC2[63:0]; ELSE DEST[i+63:i] := SRC1[i+63:i] BITWISE XOR SRC2[i+63:i]; FI; ELSE IF *merging-masking*; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE *zeroing-masking*; zeroing-masking DEST[i+63:i] = 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VXORPD (VEX.256 encoded version) DEST[63:0] := SRC1[63:0] BITWISE XOR SRC2[63:0] DEST[127:64] := SRC1[127:64] BITWISE XOR SRC2[127:64] DEST[191:128] := SRC1[191:128] BITWISE XOR SRC2[191:128] DEST[255:192] := SRC1[255:192] BITWISE XOR SRC2[255:192] DEST[MAXVL-1:256] := 0 VXORPD (VEX.128 encoded version) DEST[63:0] := SRC1[63:0] BITWISE XOR SRC2[63:0] DEST[127:64] := SRC1[127:64] BITWISE XOR SRC2[127:64] DEST[MAXVL-1:128] := 0 XORPD (128-bit Legacy SSE version) DEST[63:0] := DEST[63:0] BITWISE XOR SRC[63:0] DEST[127:64] := DEST[127:64] BITWISE XOR SRC[127:64] DEST[MAXVL-1:128] (Unmodified) Intel C/C++ Compiler Intrinsic Equivalent VXORPD __m512d _mm512_xor_pd (__m512d a, __m512d b); VXORPD __m512d _mm512_mask_xor_pd (__m512d a, __mmask8 m, __m512d b); VXORPD __m512d _mm512_maskz_xor_pd (__mmask8 m, __m512d a); VXORPD __m256d _mm256_xor_pd (__m256d a, __m256d b); VXORPD __m256d _mm256_mask_xor_pd (__m256d a, __mmask8 m, __m256d b); VXORPD __m256d _mm256_maskz_xor_pd (__mmask8 m, __m256d a); XORPD __m128d _mm_xor_pd (__m128d a, __m128d b); VXORPD __m128d _mm_mask_xor_pd (__m128d a, __mmask8 m, __m128d b); VXORPD __m128d _mm_maskz_xor_pd (__mmask8 m, __m128d a); SIMD Floating-Point Exceptions None image/svg+xml Other Exceptions Non-EVEX-encoded instructions, see Table2-21, “Type 4 Class Exception Conditions”. EVEX-encoded instructions, see Table2-49, “Type E4 Class Exception Conditions”. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .