image/svg+xml VRSQRT14PD—Compute Approximate Reciprocals of Square Roots of Packed Float64 Values Instruction Operand Encoding Description This instruction performs a SIMD computation of the approximate reciprocals of the square roots of the eight packed double-precision floating-point values in the source operand (the second operand) and stores the packed double-precision floating-point results in the destination operand (the first operand) according to the writemask. The maximum relative error for this approximation is less than 2 -14 . EVEX.512 encoded version: The source operand can be a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM register, conditionally updated using writemask k1. EVEX.256 encoded version: The source operand is a YMM register, a 256-bit memory location, or a 256-bit vector broadcasted from a 64-bit memory location. The destination operand is a YMM register, conditionally updated using writemask k1. EVEX.128 encoded version: The source operand is a XMM register, a 128-bit memory location, or a 128-bit vector broadcasted from a 64-bit memory location. The destination operand is a XMM register, conditionally updated using writemask k1. The VRSQRT14PD instruction is not affected by the rounding control bits in the MXCSR register. When a source value is a 0.0, an ∞ with the sign of the source value is returned. When the source operand is an + ∞ then +ZERO value is returned. A denormal source value is treated as zero only if DAZ bit is set in MXCSR. Otherwise it is treated correctly and performs the approximation with the specified masked response. When a source value is a negative value (other than 0.0) a floating-point QNaN_indefinite is returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN is returned. MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported. Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. A numerically exact implementation of VRSQRT14xx can be found at https://software.intel.com/en-us/arti- cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2 . Opcode/ Instruction Op / En 64/32 bit Mode Support CPUID Feature Flag Description EVEX.128.66.0F38.W1 4E /r VRSQRT14PD xmm1 {k1}{z}, xmm2/m128/m64bcst AV/VAVX512VL AVX512F Computes the approximate reciprocal square roots of the packed double-precision floating-point values in xmm2/m128/m64bcst and stores the results in xmm1. Under writemask. EVEX.256.66.0F38.W1 4E /r VRSQRT14PD ymm1 {k1}{z}, ymm2/m256/m64bcst AV/VAVX512VL AVX512F Computes the approximate reciprocal square roots of the packed double-precision floating-point values in ymm2/m256/m64bcst and stores the results in ymm1. Under writemask. EVEX.512.66.0F38.W1 4E /r VRSQRT14PD zmm1 {k1}{z}, zmm2/m512/m64bcst AV/VAVX512FComputes the approximate reciprocal square roots of the packed double-precision floating-point values in zmm2/m512/m64bcst and stores the results in zmm1 under writemask. Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 AFullModRM:reg (w)ModRM:r/m (r)NANA image/svg+xml Operation VRSQRT14PD (EVEX encoded versions) (KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) AND (SRC *is memory*) THEN DEST[i+63:i] := APPROXIMATE(1.0/ SQRT(SRC[63:0])); ELSE DEST[i+63:i] := APPROXIMATE(1.0/ SQRT(SRC[i+63:i])); FI; ELSE IF *merging-masking*; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] := 0 FI; FI; ENDFOR; DEST[MAXVL-1:VL] := 0 Intel C/C++ Compiler Intrinsic Equivalent VRSQRT14PD __m512d _mm512_rsqrt14_pd( __m512d a); VRSQRT14PD __m512d _mm512_mask_rsqrt14_pd(__m512d s, __mmask8 k, __m512d a); VRSQRT14PD __m512d _mm512_maskz_rsqrt14_pd( __mmask8 k, __m512d a); VRSQRT14PD __m256d _mm256_rsqrt14_pd( __m256d a); VRSQRT14PD __m256d _mm512_mask_rsqrt14_pd(__m256d s, __mmask8 k, __m256d a); VRSQRT14PD __m256d _mm512_maskz_rsqrt14_pd( __mmask8 k, __m256d a); VRSQRT14PD __m128d _mm_rsqrt14_pd( __m128d a); VRSQRT14PD __m128d _mm_mask_rsqrt14_pd(__m128d s, __mmask8 k, __m128d a); VRSQRT14PD __m128d _mm_maskz_rsqrt14_pd( __mmask8 k, __m128d a); SIMD Floating-Point Exceptions None Other Exceptions See Table2-49, “Type E4 Class Exception Conditions”. Table 5-17. VRSQRT14PD Special Cases Input valueResult valueComments Any denormalNormalCannot generate overflow X = 2 -2n 2 n X < 0QNaN_IndefiniteIncluding -INF X = -0-INF X = +0+INF X = +INF+0 This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .