image/svg+xmlVPSLLVW/VPSLLVD/VPSLLVQ—Variable Bit Shift Left Logical Instruction Operand EncodingOpcode/InstructionOp / En64/32 bit Mode SupportCPUID Feature FlagDescriptionVEX.128.66.0F38.W0 47 /rVPSLLVD xmm1, xmm2, xmm3/m128AV/VAVX2Shift doublewords in xmm2 left by amount specified in the corresponding element of xmm3/m128 while shifting in 0s.VEX.128.66.0F38.W1 47 /rVPSLLVQ xmm1, xmm2, xmm3/m128AV/VAVX2Shift quadwords in xmm2 left by amount specified in the corresponding element of xmm3/m128 while shifting in 0s.VEX.256.66.0F38.W0 47 /rVPSLLVD ymm1, ymm2, ymm3/m256AV/VAVX2Shift doublewords in ymm2 left by amount specified in the corresponding element of ymm3/m256 while shifting in 0s.VEX.256.66.0F38.W1 47 /rVPSLLVQ ymm1, ymm2, ymm3/m256AV/VAVX2Shift quadwords in ymm2 left by amount specified in the corresponding element of ymm3/m256 while shifting in 0s.EVEX.128.66.0F38.W1 12 /rVPSLLVW xmm1 {k1}{z}, xmm2, xmm3/m128BV/VAVX512VLAVX512BWShift words in xmm2 left by amount specified in the corresponding element of xmm3/m128 while shifting in 0s using writemask k1.EVEX.256.66.0F38.W1 12 /rVPSLLVW ymm1 {k1}{z}, ymm2, ymm3/m256BV/VAVX512VLAVX512BWShift words in ymm2 left by amount specified in the corresponding element of ymm3/m256 while shifting in 0s using writemask k1.EVEX.512.66.0F38.W1 12 /rVPSLLVW zmm1 {k1}{z}, zmm2, zmm3/m512BV/VAVX512BWShift words in zmm2 left by amount specified in the corresponding element of zmm3/m512 while shifting in 0s using writemask k1.EVEX.128.66.0F38.W0 47 /rVPSLLVD xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcstCV/VAVX512VLAVX512FShift doublewords in xmm2 left by amount specified in the corresponding element of xmm3/m128/m32bcst while shifting in 0s using writemask k1.EVEX.256.66.0F38.W0 47 /rVPSLLVD ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcstCV/VAVX512VLAVX512FShift doublewords in ymm2 left by amount specified in the corresponding element of ymm3/m256/m32bcst while shifting in 0s using writemask k1.EVEX.512.66.0F38.W0 47 /rVPSLLVD zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcstCV/VAVX512FShift doublewords in zmm2 left by amount specified in the corresponding element of zmm3/m512/m32bcst while shifting in 0s using writemask k1.EVEX.128.66.0F38.W1 47 /rVPSLLVQ xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcstCV/VAVX512VLAVX512FShift quadwords in xmm2 left by amount specified in the corresponding element of xmm3/m128/m64bcst while shifting in 0s using writemask k1.EVEX.256.66.0F38.W1 47 /rVPSLLVQ ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcstCV/VAVX512VLAVX512FShift quadwords in ymm2 left by amount specified in the corresponding element of ymm3/m256/m64bcst while shifting in 0s using writemask k1.EVEX.512.66.0F38.W1 47 /rVPSLLVQ zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcstCV/VAVX512FShift quadwords in zmm2 left by amount specified in the corresponding element of zmm3/m512/m64bcst while shifting in 0s using writemask k1.Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4ANAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)NABFull MemModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NACFullModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NA

image/svg+xmlDescriptionShifts the bits in the individual data elements (words, doublewords or quadword) in the first source operand to the left by the count value of respective data elements in the second source operand. As the bits in the data elements are shifted left, the empty low-order bits are cleared (set to 0). The count values are specified individually in each data element of the second source operand. If the unsigned integer value specified in the respective data element of the second source operand is greater than 15 (for word), 31 (for doublewords), or 63 (for a quadword), then the destination data element are written with 0. VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be either an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination register are zeroed.VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be either an YMM register or a 256-bit memory. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.EVEX encoded VPSLLVD/Q: The destination and first source operands are ZMM/YMM/XMM registers. The count operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512-bit vector broad-casted from a 32/64-bit memory location. The destination is conditionally updated with writemask k1.EVEX encoded VPSLLVW: The destination and first source operands are ZMM/YMM/XMM registers. The count operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is condition-ally updated with writemask k1.OperationVPSLLVW (EVEX encoded version) (KL, VL) = (8, 128), (16, 256), (32, 512)FOR j := 0 TO KL-1i := j * 16IF k1[j] OR *no writemask*THEN DEST[i+15:i] := ZeroExtend(SRC1[i+15:i] << SRC2[i+15:i])ELSE IF *merging-masking*; merging-maskingTHEN *DEST[i+15:i] remains unchanged*ELSE ; zeroing-maskingDEST[i+15:i] := 0FIFI;ENDFOR;DEST[MAXVL-1:VL] := 0;

image/svg+xmlVPSLLVD (VEX.128 version)COUNT_0 := SRC2[31 : 0](* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)COUNT_3 := SRC2[127 : 96];IF COUNT_0 < 32 THENDEST[31:0] := ZeroExtend(SRC1[31:0] << COUNT_0);ELSEDEST[31:0] := 0;(* Repeat shift operation for 2nd through 4th dwords *)IF COUNT_3 < 32 THENDEST[127:96] := ZeroExtend(SRC1[127:96] << COUNT_3);ELSEDEST[127:96] := 0;DEST[MAXVL-1:128] := 0;VPSLLVD (VEX.256 version)COUNT_0 := SRC2[31 : 0];(* Repeat Each COUNT_i for the 2nd through 7th dwords of SRC2*)COUNT_7 := SRC2[255 : 224];IF COUNT_0 < 32 THENDEST[31:0] := ZeroExtend(SRC1[31:0] << COUNT_0);ELSEDEST[31:0] := 0;(* Repeat shift operation for 2nd through 7th dwords *)IF COUNT_7 < 32 THENDEST[255:224] := ZeroExtend(SRC1[255:224] << COUNT_7);ELSEDEST[255:224] := 0;DEST[MAXVL-1:256] := 0;VPSLLVD (EVEX encoded version) (KL, VL) = (4, 128), (8, 256), (16, 512)FOR j := 0 TO KL-1i := j * 32IF k1[j] OR *no writemask* THENIF (EVEX.b = 1) AND (SRC2 *is memory*)THEN DEST[i+31:i] := ZeroExtend(SRC1[i+31:i] << SRC2[31:0])ELSE DEST[i+31:i] := ZeroExtend(SRC1[i+31:i] << SRC2[i+31:i])FI;ELSE IF *merging-masking*; merging-maskingTHEN *DEST[i+31:i] remains unchanged*ELSE ; zeroing-maskingDEST[i+31:i] := 0FIFI;ENDFOR;DEST[MAXVL-1:VL] := 0;

image/svg+xmlVPSLLVQ (VEX.128 version)COUNT_0 := SRC2[63 : 0];COUNT_1 := SRC2[127 : 64];IF COUNT_0 < 64THENDEST[63:0] := ZeroExtend(SRC1[63:0] << COUNT_0);ELSEDEST[63:0] := 0;IF COUNT_1 < 64 THENDEST[127:64] := ZeroExtend(SRC1[127:64] << COUNT_1);ELSEDEST[127:96] := 0;DEST[MAXVL-1:128] := 0;VPSLLVQ (VEX.256 version)COUNT_0 := SRC2[63 : 0];(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)COUNT_3 := SRC2[255 : 192];IF COUNT_0 < 64THENDEST[63:0] := ZeroExtend(SRC1[63:0] << COUNT_0);ELSEDEST[63:0] := 0;(* Repeat shift operation for 2nd through 4th dwords *)IF COUNT_3 < 64 THENDEST[255:192] := ZeroExtend(SRC1[255:192] << COUNT_3);ELSEDEST[255:192] := 0;DEST[MAXVL-1:256] := 0;VPSLLVQ (EVEX encoded version) (KL, VL) = (2, 128), (4, 256), (8, 512)FOR j := 0 TO KL-1i := j * 64IF k1[j] OR *no writemask* THENIF (EVEX.b = 1) AND (SRC2 *is memory*)THEN DEST[i+63:i] := ZeroExtend(SRC1[i+63:i] << SRC2[63:0])ELSE DEST[i+63:i] := ZeroExtend(SRC1[i+63:i] << SRC2[i+63:i])FI;ELSE IF *merging-masking*; merging-maskingTHEN *DEST[i+63:i] remains unchanged*ELSE ; zeroing-maskingDEST[i+63:i] := 0FIFI;ENDFOR;DEST[MAXVL-1:VL] := 0;

image/svg+xmlIntel C/C++ Compiler Intrinsic EquivalentVPSLLVW __m512i _mm512_sllv_epi16(__m512i a, __m512i cnt);VPSLLVW __m512i _mm512_mask_sllv_epi16(__m512i s, __mmask32 k, __m512i a, __m512i cnt);VPSLLVW __m512i _mm512_maskz_sllv_epi16( __mmask32 k, __m512i a, __m512i cnt);VPSLLVW __m256i _mm256_mask_sllv_epi16(__m256i s, __mmask16 k, __m256i a, __m256i cnt);VPSLLVW __m256i _mm256_maskz_sllv_epi16( __mmask16 k, __m256i a, __m256i cnt);VPSLLVW __m128i _mm_mask_sllv_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);VPSLLVW __m128i _mm_maskz_sllv_epi16( __mmask8 k, __m128i a, __m128i cnt);VPSLLVD __m512i _mm512_sllv_epi32(__m512i a, __m512i cnt);VPSLLVD __m512i _mm512_mask_sllv_epi32(__m512i s, __mmask16 k, __m512i a, __m512i cnt);VPSLLVD __m512i _mm512_maskz_sllv_epi32( __mmask16 k, __m512i a, __m512i cnt);VPSLLVD __m256i _mm256_mask_sllv_epi32(__m256i s, __mmask8 k, __m256i a, __m256i cnt);VPSLLVD __m256i _mm256_maskz_sllv_epi32( __mmask8 k, __m256i a, __m256i cnt);VPSLLVD __m128i _mm_mask_sllv_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);VPSLLVD __m128i _mm_maskz_sllv_epi32( __mmask8 k, __m128i a, __m128i cnt);VPSLLVQ __m512i _mm512_sllv_epi64(__m512i a, __m512i cnt);VPSLLVQ __m512i _mm512_mask_sllv_epi64(__m512i s, __mmask8 k, __m512i a, __m512i cnt);VPSLLVQ __m512i _mm512_maskz_sllv_epi64( __mmask8 k, __m512i a, __m512i cnt);VPSLLVD __m256i _mm256_mask_sllv_epi64(__m256i s, __mmask8 k, __m256i a, __m256i cnt);VPSLLVD __m256i _mm256_maskz_sllv_epi64( __mmask8 k, __m256i a, __m256i cnt);VPSLLVD __m128i _mm_mask_sllv_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);VPSLLVD __m128i _mm_maskz_sllv_epi64( __mmask8 k, __m128i a, __m128i cnt);VPSLLVD __m256i _mm256_sllv_epi32 (__m256i m, __m256i count)VPSLLVQ __m256i _mm256_sllv_epi64 (__m256i m, __m256i count)SIMD Floating-Point ExceptionsNoneOther ExceptionsVEX-encoded instructions, see Table2-21, “Type 4 Class Exception Conditions”.EVEX-encoded VPSLLVD/VPSLLVQ, see Table2-49, “Type E4 Class Exception Conditions”.EVEX-encoded VPSLLVW, see Exceptions Type E4.nb in Table2-49, “Type E4 Class Exception Conditions”.

This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.