image/svg+xml VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS—Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values Instruction Operand Encoding Description VFNMSUB132SS: Multiplies the low packed single-precision floating-point value from the first source operand to the low packed single-precision floating-point value in the third source operand. From negated infinite precision intermediate result, the low single-precision floating-point value in the second source operand, performs rounding and stores the resulting packed single-precision floating-point value to the destination operand (first source operand). VFNMSUB213SS: Multiplies the low packed single-precision floating-point value from the second source operand to the low packed single-precision floating-point value in the first source operand. From negated infinite precision intermediate result, the low single-precision floating-point value in the third source operand, performs rounding and stores the resulting packed single-precision floating-point value to the destination operand (first source operand). VFNMSUB231SS: Multiplies the low packed single-precision floating-point value from the second source to the low packed single-precision floating-point value in the third source operand. From negated infinite precision interme- diate result, the low single-precision floating-point value in the first source operand, performs rounding and stores the resulting packed single-precision floating-point value to the destination operand (first source operand). VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field. The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field. Bits 127:32 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed. EVEX encoded version: The low doubleword element of the destination is updated according to the writemask. Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction column. Opcode/ Instruction Op / En 64/32 bit Mode Support CPUID Feature Flag Description VEX.LIG.66.0F38.W0 9F /r VFNMSUB132SS xmm1, xmm2, xmm3/m32 AV/VFMAMultiply scalar single-precision floating-point value from xmm1 and xmm3/m32, negate the multiplication result and subtract xmm2 and put result in xmm1. VEX.LIG.66.0F38.W0 AF /r VFNMSUB213SS xmm1, xmm2, xmm3/m32 AV/VFMAMultiply scalar single-precision floating-point value from xmm1 and xmm2, negate the multiplication result and subtract xmm3/m32 and put result in xmm1. VEX.LIG.66.0F38.W0 BF /r VFNMSUB231SS xmm1, xmm2, xmm3/m32 AV/VFMAMultiply scalar single-precision floating-point value from xmm2 and xmm3/m32, negate the multiplication result and subtract xmm1 and put result in xmm1. EVEX.LLIG.66.0F38.W0 9F /r VFNMSUB132SS xmm1 {k1}{z}, xmm2, xmm3/m32{er} BV/VAVX512FMultiply scalar single-precision floating-point value from xmm1 and xmm3/m32, negate the multiplication result and subtract xmm2 and put result in xmm1. EVEX.LLIG.66.0F38.W0 AF /r VFNMSUB213SS xmm1 {k1}{z}, xmm2, xmm3/m32{er} BV/VAVX512FMultiply scalar single-precision floating-point value from xmm1 and xmm2, negate the multiplication result and subtract xmm3/m32 and put result in xmm1. EVEX.LLIG.66.0F38.W0 BF /r VFNMSUB231SS xmm1 {k1}{z}, xmm2, xmm3/m32{er} BV/VAVX512FMultiply scalar single-precision floating-point value from xmm2 and xmm3/m32, negate the multiplication result and subtract xmm1 and put result in xmm1. Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (r, w)VEX.vvvv (r)ModRM:r/m (r)NA BTuple1 ScalarModRM:reg (r, w)EVEX.vvvv (r)ModRM:r/m (r)NA image/svg+xml Operation In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no rounding). VFNMSUB132SS DEST, SRC2, SRC3 (EVEX encoded version) IF (EVEX.b = 1) and SRC3 *is a register* THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; IF k1[0] or *no writemask* THENDEST[31:0] := RoundFPControl(-(DEST[31:0]*SRC3[31:0]) - SRC2[31:0]) ELSE IF *merging-masking*; merging-masking THEN *DEST[31:0] remains unchanged* ELSE ; zeroing-masking THEN DEST[31:0] := 0 FI; FI; DEST[127:32] := DEST[127:32] DEST[MAXVL-1:128] := 0 VFNMSUB213SS DEST, SRC2, SRC3 (EVEX encoded version) IF (EVEX.b = 1) and SRC3 *is a register* THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; IF k1[0] or *no writemask* THENDEST[31:0] := RoundFPControl(-(SRC2[31:0]*DEST[31:0]) - SRC3[31:0]) ELSE IF *merging-masking*; merging-masking THEN *DEST[31:0] remains unchanged* ELSE ; zeroing-masking THEN DEST[31:0] := 0 FI; FI; DEST[127:32] := DEST[127:32] DEST[MAXVL-1:128] := 0 image/svg+xml VFNMSUB231SS DEST, SRC2, SRC3 (EVEX encoded version) IF (EVEX.b = 1) and SRC3 *is a register* THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; IF k1[0] or *no writemask* THENDEST[31:0] := RoundFPControl(-(SRC2[31:0]*SRC3[63:0]) - DEST[31:0]) ELSE IF *merging-masking*; merging-masking THEN *DEST[31:0] remains unchanged* ELSE ; zeroing-masking THEN DEST[31:0] := 0 FI; FI; DEST[127:32] := DEST[127:32] DEST[MAXVL-1:128] := 0 VFNMSUB132SS DEST, SRC2, SRC3 (VEX encoded version) DEST[31:0] := RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) - SRC2[31:0]) DEST[127:32] := DEST[127:32] DEST[MAXVL-1:128] := 0 VFNMSUB213SS DEST, SRC2, SRC3 (VEX encoded version) DEST[31:0] := RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) - SRC3[31:0]) DEST[127:32] := DEST[127:32] DEST[MAXVL-1:128] := 0 VFNMSUB231SS DEST, SRC2, SRC3 (VEX encoded version) DEST[31:0] := RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[31:0]) - DEST[31:0]) DEST[127:32] := DEST[127:32] DEST[MAXVL-1:128] := 0 Intel C/C++ Compiler Intrinsic Equivalent VFNMSUBxxxSS __m128 _mm_fnmsub_round_ss(__m128 a, __m128 b, __m128 c, int r); VFNMSUBxxxSS __m128 _mm_mask_fnmsub_ss(__m128 a, __mmask8 k, __m128 b, __m128 c); VFNMSUBxxxSS __m128 _mm_maskz_fnmsub_ss(__mmask8 k, __m128 a, __m128 b, __m128 c); VFNMSUBxxxSS __m128 _mm_mask3_fnmsub_ss(__m128 a, __m128 b, __m128 c, __mmask8 k); VFNMSUBxxxSS __m128 _mm_mask_fnmsub_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int r); VFNMSUBxxxSS __m128 _mm_maskz_fnmsub_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int r); VFNMSUBxxxSS __m128 _mm_mask3_fnmsub_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int r); VFNMSUBxxxSS __m128 _mm_fnmsub_ss (__m128 a, __m128 b, __m128 c); SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal Other Exceptions VEX-encoded instructions, see Table2-20, “Type 3 Class Exception Conditions”. EVEX-encoded instructions, see Table2-47, “Type E3 Class Exception Conditions”. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .