image/svg+xmlVFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS—Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point ValuesInstruction Operand EncodingDescriptionVFNMSUB132SS: Multiplies the low packed single-precision floating-point value from the first source operand to the low packed single-precision floating-point value in the third source operand. From negated infinite precision intermediate result, the low single-precision floating-point value in the second source operand, performs rounding and stores the resulting packed single-precision floating-point value to the destination operand (first source operand).VFNMSUB213SS: Multiplies the low packed single-precision floating-point value from the second source operand to the low packed single-precision floating-point value in the first source operand. From negated infinite precision intermediate result, the low single-precision floating-point value in the third source operand, performs rounding and stores the resulting packed single-precision floating-point value to the destination operand (first source operand).VFNMSUB231SS: Multiplies the low packed single-precision floating-point value from the second source to the low packed single-precision floating-point value in the third source operand. From negated infinite precision interme-diate result, the low single-precision floating-point value in the first source operand, performs rounding and stores the resulting packed single-precision floating-point value to the destination operand (first source operand).VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field. The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field. Bits 127:32 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.EVEX encoded version: The low doubleword element of the destination is updated according to the writemask.Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction column.Opcode/InstructionOp / En64/32 bit Mode SupportCPUID Feature FlagDescriptionVEX.LIG.66.0F38.W0 9F /r VFNMSUB132SS xmm1, xmm2, xmm3/m32AV/VFMAMultiply scalar single-precision floating-point value from xmm1 and xmm3/m32, negate the multiplication result and subtract xmm2 and put result in xmm1.VEX.LIG.66.0F38.W0 AF /r VFNMSUB213SS xmm1, xmm2, xmm3/m32AV/VFMAMultiply scalar single-precision floating-point value from xmm1 and xmm2, negate the multiplication result and subtract xmm3/m32 and put result in xmm1.VEX.LIG.66.0F38.W0 BF /r VFNMSUB231SS xmm1, xmm2, xmm3/m32AV/VFMAMultiply scalar single-precision floating-point value from xmm2 and xmm3/m32, negate the multiplication result and subtract xmm1 and put result in xmm1.EVEX.LLIG.66.0F38.W0 9F /r VFNMSUB132SS xmm1 {k1}{z}, xmm2, xmm3/m32{er}BV/VAVX512FMultiply scalar single-precision floating-point value from xmm1 and xmm3/m32, negate the multiplication result and subtract xmm2 and put result in xmm1.EVEX.LLIG.66.0F38.W0 AF /r VFNMSUB213SS xmm1 {k1}{z}, xmm2, xmm3/m32{er} BV/VAVX512FMultiply scalar single-precision floating-point value from xmm1 and xmm2, negate the multiplication result and subtract xmm3/m32 and put result in xmm1.EVEX.LLIG.66.0F38.W0 BF /r VFNMSUB231SS xmm1 {k1}{z}, xmm2, xmm3/m32{er}BV/VAVX512FMultiply scalar single-precision floating-point value from xmm2 and xmm3/m32, negate the multiplication result and subtract xmm1 and put result in xmm1.Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4ANAModRM:reg (r, w)VEX.vvvv (r)ModRM:r/m (r)NABTuple1 ScalarModRM:reg (r, w)EVEX.vvvv (r)ModRM:r/m (r)NA

image/svg+xmlOperationIn the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no rounding).VFNMSUB132SS DEST, SRC2, SRC3 (EVEX encoded version)IF (EVEX.b = 1) and SRC3 *is a register*THENSET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);FI;IF k1[0] or *no writemask*THENDEST[31:0] := RoundFPControl(-(DEST[31:0]*SRC3[31:0]) - SRC2[31:0])ELSE IF *merging-masking*; merging-maskingTHEN *DEST[31:0] remains unchanged*ELSE ; zeroing-maskingTHEN DEST[31:0] := 0FI;FI;DEST[127:32] := DEST[127:32]DEST[MAXVL-1:128] := 0VFNMSUB213SS DEST, SRC2, SRC3 (EVEX encoded version)IF (EVEX.b = 1) and SRC3 *is a register*THENSET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);FI;IF k1[0] or *no writemask*THENDEST[31:0] := RoundFPControl(-(SRC2[31:0]*DEST[31:0]) - SRC3[31:0])ELSE IF *merging-masking*; merging-maskingTHEN *DEST[31:0] remains unchanged*ELSE ; zeroing-maskingTHEN DEST[31:0] := 0FI;FI;DEST[127:32] := DEST[127:32]DEST[MAXVL-1:128] := 0

image/svg+xmlVFNMSUB231SS DEST, SRC2, SRC3 (EVEX encoded version)IF (EVEX.b = 1) and SRC3 *is a register*THENSET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);FI;IF k1[0] or *no writemask*THENDEST[31:0] := RoundFPControl(-(SRC2[31:0]*SRC3[63:0]) - DEST[31:0])ELSE IF *merging-masking*; merging-maskingTHEN *DEST[31:0] remains unchanged*ELSE ; zeroing-maskingTHEN DEST[31:0] := 0FI;FI;DEST[127:32] := DEST[127:32]DEST[MAXVL-1:128] := 0VFNMSUB132SS DEST, SRC2, SRC3 (VEX encoded version)DEST[31:0] := RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) - SRC2[31:0])DEST[127:32] := DEST[127:32]DEST[MAXVL-1:128] := 0VFNMSUB213SS DEST, SRC2, SRC3 (VEX encoded version)DEST[31:0] := RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) - SRC3[31:0])DEST[127:32] := DEST[127:32]DEST[MAXVL-1:128] := 0VFNMSUB231SS DEST, SRC2, SRC3 (VEX encoded version)DEST[31:0] := RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[31:0]) - DEST[31:0])DEST[127:32] := DEST[127:32]DEST[MAXVL-1:128] := 0Intel C/C++ Compiler Intrinsic EquivalentVFNMSUBxxxSS __m128 _mm_fnmsub_round_ss(__m128 a, __m128 b, __m128 c, int r);VFNMSUBxxxSS __m128 _mm_mask_fnmsub_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);VFNMSUBxxxSS __m128 _mm_maskz_fnmsub_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);VFNMSUBxxxSS __m128 _mm_mask3_fnmsub_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);VFNMSUBxxxSS __m128 _mm_mask_fnmsub_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int r);VFNMSUBxxxSS __m128 _mm_maskz_fnmsub_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int r);VFNMSUBxxxSS __m128 _mm_mask3_fnmsub_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int r);VFNMSUBxxxSS __m128 _mm_fnmsub_ss (__m128 a, __m128 b, __m128 c);SIMD Floating-Point ExceptionsOverflow, Underflow, Invalid, Precision, DenormalOther ExceptionsVEX-encoded instructions, see Table2-20, “Type 3 Class Exception Conditions”.EVEX-encoded instructions, see Table2-47, “Type E3 Class Exception Conditions”.

This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.