image/svg+xmlVFNMADD132SD/VFNMADD213SD/VFNMADD231SD—Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point ValuesInstruction Operand EncodingDescriptionVFNMADD132SD: Multiplies the low packed double-precision floating-point value from the first source operand to the low packed double-precision floating-point value in the third source operand, adds the negated infinite preci-sion intermediate result to the low packed double-precision floating-point values in the second source operand, performs rounding and stores the resulting packed double-precision floating-point value to the destination operand (first source operand).VFNMADD213SD: Multiplies the low packed double-precision floating-point value from the second source operand to the low packed double-precision floating-point value in the first source operand, adds the negated infinite preci-sion intermediate result to the low packed double-precision floating-point value in the third source operand, performs rounding and stores the resulting packed double-precision floating-point value to the destination operand (first source operand).VFNMADD231SD: Multiplies the low packed double-precision floating-point value from the second source to the low packed double-precision floating-point value in the third source operand, adds the negated infinite precision inter-mediate result to the low packed double-precision floating-point value in the first source operand, performs rounding and stores the resulting packed double-precision floating-point value to the destination operand (first source operand).VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field. The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field. Bits 127:64 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.Opcode/InstructionOp / En64/32 bit Mode SupportCPUID Feature FlagDescriptionVEX.LIG.66.0F38.W1 9D /r VFNMADD132SD xmm1, xmm2, xmm3/m64AV/VFMAMultiply scalar double-precision floating-point value from xmm1 and xmm3/mem, negate the multiplication result and add to xmm2 and put result in xmm1.VEX.LIG.66.0F38.W1 AD /rVFNMADD213SD xmm1, xmm2, xmm3/m64AV/VFMAMultiply scalar double-precision floating-point value from xmm1 and xmm2, negate the multiplication result and add to xmm3/mem and put result in xmm1.VEX.LIG.66.0F38.W1 BD /r VFNMADD231SD xmm1, xmm2, xmm3/m64AV/VFMAMultiply scalar double-precision floating-point value from xmm2 and xmm3/mem, negate the multiplication result and add to xmm1 and put result in xmm1.EVEX.LLIG.66.0F38.W1 9D /rVFNMADD132SD xmm1 {k1}{z}, xmm2, xmm3/m64{er}BV/VAVX512FMultiply scalar double-precision floating-point value from xmm1 and xmm3/m64, negate the multiplication result and add to xmm2 and put result in xmm1.EVEX.LLIG.66.0F38.W1 AD /r VFNMADD213SD xmm1 {k1}{z}, xmm2, xmm3/m64{er} BV/VAVX512FMultiply scalar double-precision floating-point value from xmm1 and xmm2, negate the multiplication result and add to xmm3/m64 and put result in xmm1.EVEX.LLIG.66.0F38.W1 BD /r VFNMADD231SD xmm1 {k1}{z}, xmm2, xmm3/m64{er}BV/VAVX512FMultiply scalar double-precision floating-point value from xmm2 and xmm3/m64, negate the multiplication result and add to xmm1 and put result in xmm1.Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4ANAModRM:reg (r, w)VEX.vvvv (r)ModRM:r/m (r)NABTuple1 ScalarModRM:reg (r, w)EVEX.vvvv (r)ModRM:r/m (r)NA

image/svg+xmlEVEX encoded version: The low quadword element of the destination is updated according to the writemask.Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction column.OperationIn the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no rounding).VFNMADD132SD DEST, SRC2, SRC3 (EVEX encoded version)IF (EVEX.b = 1) and SRC3 *is a register*THENSET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);FI;IF k1[0] or *no writemask*THENDEST[63:0] := RoundFPControl(-(DEST[63:0]*SRC3[63:0]) + SRC2[63:0])ELSE IF *merging-masking*; merging-maskingTHEN *DEST[63:0] remains unchanged*ELSE ; zeroing-maskingTHEN DEST[63:0] := 0FI;FI;DEST[127:64] := DEST[127:64]DEST[MAXVL-1:128] := 0VFNMADD213SD DEST, SRC2, SRC3 (EVEX encoded version) IF (EVEX.b = 1) and SRC3 *is a register*THENSET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);FI;IF k1[0] or *no writemask*THENDEST[63:0] := RoundFPControl(-(SRC2[63:0]*DEST[63:0]) + SRC3[63:0])ELSE IF *merging-masking*; merging-maskingTHEN *DEST[63:0] remains unchanged*ELSE ; zeroing-maskingTHEN DEST[63:0] := 0FI;FI;DEST[127:64] := DEST[127:64]DEST[MAXVL-1:128] := 0

image/svg+xmlVFNMADD231SD DEST, SRC2, SRC3 (EVEX encoded version)IF (EVEX.b = 1) and SRC3 *is a register*THENSET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);FI;IF k1[0] or *no writemask*THENDEST[63:0] := RoundFPControl(-(SRC2[63:0]*SRC3[63:0]) + DEST[63:0])ELSE IF *merging-masking*; merging-maskingTHEN *DEST[63:0] remains unchanged*ELSE ; zeroing-maskingTHEN DEST[63:0] := 0FI;FI;DEST[127:64] := DEST[127:64]DEST[MAXVL-1:128] := 0VFNMADD132SD DEST, SRC2, SRC3 (VEX encoded version)DEST[63:0] := RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) + SRC2[63:0])DEST[127:64] := DEST[127:64]DEST[MAXVL-1:128] := 0VFNMADD213SD DEST, SRC2, SRC3 (VEX encoded version)DEST[63:0] := RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) + SRC3[63:0])DEST[127:64] := DEST[127:64]DEST[MAXVL-1:128] := 0VFNMADD231SD DEST, SRC2, SRC3 (VEX encoded version)DEST[63:0] := RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) + DEST[63:0])DEST[127:64] := DEST[127:64]DEST[MAXVL-1:128] := 0Intel C/C++ Compiler Intrinsic EquivalentVFNMADDxxxSD __m128d _mm_fnmadd_round_sd(__m128d a, __m128d b, __m128d c, int r);VFNMADDxxxSD __m128d _mm_mask_fnmadd_sd(__m128d a, __mmask8 k, __m128d b, __m128d c);VFNMADDxxxSD __m128d _mm_maskz_fnmadd_sd(__mmask8 k, __m128d a, __m128d b, __m128d c);VFNMADDxxxSD __m128d _mm_mask3_fnmadd_sd(__m128d a, __m128d b, __m128d c, __mmask8 k);VFNMADDxxxSD __m128d _mm_mask_fnmadd_round_sd(__m128d a, __mmask8 k, __m128d b, __m128d c, int r);VFNMADDxxxSD __m128d _mm_maskz_fnmadd_round_sd(__mmask8 k, __m128d a, __m128d b, __m128d c, int r);VFNMADDxxxSD __m128d _mm_mask3_fnmadd_round_sd(__m128d a, __m128d b, __m128d c, __mmask8 k, int r);VFNMADDxxxSD __m128d _mm_fnmadd_sd (__m128d a, __m128d b, __m128d c);SIMD Floating-Point ExceptionsOverflow, Underflow, Invalid, Precision, DenormalOther ExceptionsVEX-encoded instructions, see Table2-20, “Type 3 Class Exception Conditions”.EVEX-encoded instructions, see Table2-47, “Type E3 Class Exception Conditions”.

This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.