image/svg+xml VFMADD132PS/VFMADD213PS/VFMADD231PS—Fused Multiply-Add of Packed Single- Precision Floating-Point Values Opcode/ Instruction Op/ En 64/32 bit Mode Support CPUID Feature Flag Description VEX.128.66.0F38.W0 98 /r VFMADD132PS xmm1, xmm2, xmm3/m128 AV/VFMAMultiply packed single-precision floating-point values from xmm1 and xmm3/mem, add to xmm2 and put result in xmm1. VEX.128.66.0F38.W0 A8 /r VFMADD213PS xmm1, xmm2, xmm3/m128 AV/VFMAMultiply packed single-precision floating-point values from xmm1 and xmm2, add to xmm3/mem and put result in xmm1. VEX.128.66.0F38.W0 B8 /r VFMADD231PS xmm1, xmm2, xmm3/m128 AV/VFMAMultiply packed single-precision floating-point values from xmm2 and xmm3/mem, add to xmm1 and put result in xmm1. VEX.256.66.0F38.W0 98 /r VFMADD132PS ymm1, ymm2, ymm3/m256 AV/VFMAMultiply packed single-precision floating-point values from ymm1 and ymm3/mem, add to ymm2 and put result in ymm1. VEX.256.66.0F38.W0 A8 /r VFMADD213PS ymm1, ymm2, ymm3/m256 AV/VFMAMultiply packed single-precision floating-point values from ymm1 and ymm2, add to ymm3/mem and put result in ymm1. VEX.256.66.0F38.0 B8 /r VFMADD231PS ymm1, ymm2, ymm3/m256 AV/VFMAMultiply packed single-precision floating-point values from ymm2 and ymm3/mem, add to ymm1 and put result in ymm1. EVEX.128.66.0F38.W0 98 /r VFMADD132PS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst BV/VAVX512VL AVX512F Multiply packed single-precision floating-point values from xmm1 and xmm3/m128/m32bcst, add to xmm2 and put result in xmm1. EVEX.128.66.0F38.W0 A8 /r VFMADD213PS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst BV/VAVX512VL AVX512F Multiply packed single-precision floating-point values from xmm1 and xmm2, add to xmm3/m128/m32bcst and put result in xmm1. EVEX.128.66.0F38.W0 B8 /r VFMADD231PS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst BV/VAVX512VL AVX512F Multiply packed single-precision floating-point values from xmm2 and xmm3/m128/m32bcst, add to xmm1 and put result in xmm1. EVEX.256.66.0F38.W0 98 /r VFMADD132PS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst BV/VAVX512VL AVX512F Multiply packed single-precision floating-point values from ymm1 and ymm3/m256/m32bcst, add to ymm2 and put result in ymm1. EVEX.256.66.0F38.W0 A8 /r VFMADD213PS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst BV/VAVX512VL AVX512F Multiply packed single-precision floating-point values from ymm1 and ymm2, add to ymm3/m256/m32bcst and put result in ymm1. EVEX.256.66.0F38.W0 B8 /r VFMADD231PS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst BV/VAVX512VL AVX512F Multiply packed single-precision floating-point values from ymm2 and ymm3/m256/m32bcst, add to ymm1 and put result in ymm1. EVEX.512.66.0F38.W0 98 /r VFMADD132PS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst{er} BV/VAVX512FMultiply packed single-precision floating-point values from zmm1 and zmm3/m512/m32bcst, add to zmm2 and put result in zmm1. EVEX.512.66.0F38.W0 A8 /r VFMADD213PS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst{er} BV/VAVX512FMultiply packed single-precision floating-point values from zmm1 and zmm2, add to zmm3/m512/m32bcst and put result in zmm1. EVEX.512.66.0F38.W0 B8 /r VFMADD231PS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst{er} BV/VAVX512FMultiply packed single-precision floating-point values from zmm2 and zmm3/m512/m32bcst, add to zmm1 and put result in zmm1. image/svg+xml Instruction Operand Encoding Description Performs a set of SIMD multiply-add computation on packed single-precision floating-point values using three source operands and writes the multiply-add results in the destination operand. The destination operand is also the first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD register or a memory location. VFMADD132PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the first source operand to the four, eight or sixteen packed single-precision floating-point values in the third source operand, adds the infinite precision intermediate result to the four, eight or sixteen packed single-precision floating-point values in the second source operand, performs rounding and stores the resulting four, eight or sixteen packed single-precision floating-point values to the destination operand (first source operand). VFMADD213PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second source operand to the four, eight or sixteen packed single-precision floating-point values in the first source operand, adds the infinite precision intermediate result to the four, eight or sixteen packed single-precision floating-point values in the third source operand, performs rounding and stores the resulting the four, eight or sixteen packed single-precision floating-point values to the destination operand (first source operand). VFMADD231PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second source operand to the four, eight or sixteen packed single-precision floating-point values in the third source operand, adds the infinite precision intermediate result to the four, eight or sixteen packed single-precision floating-point values in the first source operand, performs rounding and stores the resulting four, eight or sixteen packed single-precision floating-point values to the destination operand (first source operand). EVEX encoded versions: The destination operand (also first source operand) is a ZMM register and encoded in reg_field. The second source operand is a ZMM register and encoded in EVEX.vvvv. The third source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The destination operand is conditionally updated with write mask k1. VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit memory location and encoded in rm_field. VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination register are zeroed. Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (r, w)VEX.vvvv (r)ModRM:r/m (r)NA BFullModRM:reg (r, w)EVEX.vvvv (r)ModRM:r/m (r)NA image/svg+xml Operation In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no rounding). VFMADD132PS DEST, SRC2, SRC3 IF (VEX.128) THEN MAXNUM := 4 ELSEIF (VEX.256) MAXNUM := 8 FI For i = 0 to MAXNUM-1 { n := 32*i; DEST[n+31:n] := RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] + SRC2[n+31:n]) } IF (VEX.128) THEN DEST[MAXVL-1:128] := 0 ELSEIF (VEX.256) DEST[MAXVL-1:256] := 0 FI VFMADD213PS DEST, SRC2, SRC3 IF (VEX.128) THEN MAXNUM := 4 ELSEIF (VEX.256) MAXNUM := 8 FI For i = 0 to MAXNUM-1 { n := 32*i; DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] + SRC3[n+31:n]) } IF (VEX.128) THEN DEST[MAXVL-1:128] := 0 ELSEIF (VEX.256) DEST[MAXVL-1:256] := 0 FI VFMADD231PS DEST, SRC2, SRC3 IF (VEX.128) THEN MAXNUM := 4 ELSEIF (VEX.256) MAXNUM := 8 FI For i = 0 to MAXNUM-1 { n := 32*i; DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] + DEST[n+31:n]) } IF (VEX.128) THEN DEST[MAXVL-1:128] := 0 ELSEIF (VEX.256) DEST[MAXVL-1:256] := 0 FI image/svg+xml VFMADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register) (KL, VL) = (4, 128), (8, 256), (16, 512) IF (VL = 512) AND (EVEX.b = 1) THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i]) ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VFMADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source) (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+31:i] := RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] + SRC2[i+31:i]) ELSE DEST[i+31:i] := RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i]) FI; ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 image/svg+xml VFMADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register) (KL, VL) = (4, 128), (8, 256), (16, 512) IF (VL = 512) AND (EVEX.b = 1) THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i]) ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VFMADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source) (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+31:i] := RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[31:0]) ELSE DEST[i+31:i] := RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i]) FI; ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 image/svg+xml VFMADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register) (KL, VL) = (4, 128), (8, 256), (16, 512) IF (VL = 512) AND (EVEX.b = 1) THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i]) ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VFMADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source) (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+31:i] := RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] + DEST[i+31:i]) ELSE DEST[i+31:i] := RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i]) FI; ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 image/svg+xml Intel C/C++ Compiler Intrinsic Equivalent VFMADDxxxPS __m512 _mm512_fmadd_ps(__m512 a, __m512 b, __m512 c); VFMADDxxxPS __m512 _mm512_fmadd_round_ps(__m512 a, __m512 b, __m512 c, int r); VFMADDxxxPS __m512 _mm512_mask_fmadd_ps(__m512 a, __mmask16 k, __m512 b, __m512 c); VFMADDxxxPS __m512 _mm512_maskz_fmadd_ps(__mmask16 k, __m512 a, __m512 b, __m512 c); VFMADDxxxPS __m512 _mm512_mask3_fmadd_ps(__m512 a, __m512 b, __m512 c, __mmask16 k); VFMADDxxxPS __m512 _mm512_mask_fmadd_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r); VFMADDxxxPS __m512 _mm512_maskz_fmadd_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r); VFMADDxxxPS __m512 _mm512_mask3_fmadd_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r); VFMADDxxxPS __m256 _mm256_mask_fmadd_ps(__m256 a, __mmask8 k, __m256 b, __m256 c); VFMADDxxxPS __m256 _mm256_maskz_fmadd_ps(__mmask8 k, __m256 a, __m256 b, __m256 c); VFMADDxxxPS __m256 _mm256_mask3_fmadd_ps(__m256 a, __m256 b, __m256 c, __mmask8 k); VFMADDxxxPS __m128 _mm_mask_fmadd_ps(__m128 a, __mmask8 k, __m128 b, __m128 c); VFMADDxxxPS __m128 _mm_maskz_fmadd_ps(__mmask8 k, __m128 a, __m128 b, __m128 c); VFMADDxxxPS __m128 _mm_mask3_fmadd_ps(__m128 a, __m128 b, __m128 c, __mmask8 k); VFMADDxxxPS __m128 _mm_fmadd_ps (__m128 a, __m128 b, __m128 c); VFMADDxxxPS __m256 _mm256_fmadd_ps (__m256 a, __m256 b, __m256 c); SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal Other Exceptions VEX-encoded instructions, see Table2-19, “Type 2 Class Exception Conditions”. EVEX-encoded instructions, see Table2-46, “Type E2 Class Exception Conditions”. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .