image/svg+xmlVFMADD132PS/VFMADD213PS/VFMADD231PS—Fused Multiply-Add of Packed Single-Precision Floating-Point ValuesOpcode/InstructionOp/En64/32 bit Mode SupportCPUID Feature FlagDescriptionVEX.128.66.0F38.W0 98 /r VFMADD132PS xmm1, xmm2, xmm3/m128AV/VFMAMultiply packed single-precision floating-point values from xmm1 and xmm3/mem, add to xmm2 and put result in xmm1.VEX.128.66.0F38.W0 A8 /r VFMADD213PS xmm1, xmm2, xmm3/m128AV/VFMAMultiply packed single-precision floating-point values from xmm1 and xmm2, add to xmm3/mem and put result in xmm1.VEX.128.66.0F38.W0 B8 /r VFMADD231PS xmm1, xmm2, xmm3/m128AV/VFMAMultiply packed single-precision floating-point values from xmm2 and xmm3/mem, add to xmm1 and put result in xmm1.VEX.256.66.0F38.W0 98 /r VFMADD132PS ymm1, ymm2, ymm3/m256AV/VFMAMultiply packed single-precision floating-point values from ymm1 and ymm3/mem, add to ymm2 and put result in ymm1.VEX.256.66.0F38.W0 A8 /r VFMADD213PS ymm1, ymm2, ymm3/m256AV/VFMAMultiply packed single-precision floating-point values from ymm1 and ymm2, add to ymm3/mem and put result in ymm1.VEX.256.66.0F38.0 B8 /r VFMADD231PS ymm1, ymm2, ymm3/m256AV/VFMAMultiply packed single-precision floating-point values from ymm2 and ymm3/mem, add to ymm1 and put result in ymm1.EVEX.128.66.0F38.W0 98 /r VFMADD132PS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcstBV/VAVX512VLAVX512FMultiply packed single-precision floating-point values from xmm1 and xmm3/m128/m32bcst, add to xmm2 and put result in xmm1.EVEX.128.66.0F38.W0 A8 /r VFMADD213PS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcstBV/VAVX512VLAVX512FMultiply packed single-precision floating-point values from xmm1 and xmm2, add to xmm3/m128/m32bcst and put result in xmm1.EVEX.128.66.0F38.W0 B8 /r VFMADD231PS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcstBV/VAVX512VLAVX512FMultiply packed single-precision floating-point values from xmm2 and xmm3/m128/m32bcst, add to xmm1 and put result in xmm1.EVEX.256.66.0F38.W0 98 /r VFMADD132PS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcstBV/VAVX512VLAVX512FMultiply packed single-precision floating-point values from ymm1 and ymm3/m256/m32bcst, add to ymm2 and put result in ymm1.EVEX.256.66.0F38.W0 A8 /r VFMADD213PS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcstBV/VAVX512VLAVX512FMultiply packed single-precision floating-point values from ymm1 and ymm2, add to ymm3/m256/m32bcst and put result in ymm1.EVEX.256.66.0F38.W0 B8 /r VFMADD231PS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcstBV/VAVX512VLAVX512FMultiply packed single-precision floating-point values from ymm2 and ymm3/m256/m32bcst, add to ymm1 and put result in ymm1.EVEX.512.66.0F38.W0 98 /r VFMADD132PS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst{er}BV/VAVX512FMultiply packed single-precision floating-point values from zmm1 and zmm3/m512/m32bcst, add to zmm2 and put result in zmm1.EVEX.512.66.0F38.W0 A8 /r VFMADD213PS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst{er}BV/VAVX512FMultiply packed single-precision floating-point values from zmm1 and zmm2, add to zmm3/m512/m32bcst and put result in zmm1.EVEX.512.66.0F38.W0 B8 /r VFMADD231PS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst{er}BV/VAVX512FMultiply packed single-precision floating-point values from zmm2 and zmm3/m512/m32bcst, add to zmm1 and put result in zmm1.

image/svg+xmlInstruction Operand EncodingDescriptionPerforms a set of SIMD multiply-add computation on packed single-precision floating-point values using three source operands and writes the multiply-add results in the destination operand. The destination operand is also the first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD register or a memory location. VFMADD132PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the first source operand to the four, eight or sixteen packed single-precision floating-point values in the third source operand, adds the infinite precision intermediate result to the four, eight or sixteen packed single-precision floating-point values in the second source operand, performs rounding and stores the resulting four, eight or sixteen packed single-precision floating-point values to the destination operand (first source operand).VFMADD213PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second source operand to the four, eight or sixteen packed single-precision floating-point values in the first source operand, adds the infinite precision intermediate result to the four, eight or sixteen packed single-precision floating-point values in the third source operand, performs rounding and stores the resulting the four, eight or sixteen packed single-precision floating-point values to the destination operand (first source operand).VFMADD231PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second source operand to the four, eight or sixteen packed single-precision floating-point values in the third source operand, adds the infinite precision intermediate result to the four, eight or sixteen packed single-precision floating-point values in the first source operand, performs rounding and stores the resulting four, eight or sixteen packed single-precision floating-point values to the destination operand (first source operand).EVEX encoded versions: The destination operand (also first source operand) is a ZMM register and encoded in reg_field. The second source operand is a ZMM register and encoded in EVEX.vvvv. The third source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The destination operand is conditionally updated with write mask k1.VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit memory location and encoded in rm_field. VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination register are zeroed.Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4ANAModRM:reg (r, w)VEX.vvvv (r)ModRM:r/m (r)NABFullModRM:reg (r, w)EVEX.vvvv (r)ModRM:r/m (r)NA

image/svg+xmlOperationIn the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no rounding).VFMADD132PS DEST, SRC2, SRC3 IF (VEX.128) THEN MAXNUM := 4ELSEIF (VEX.256)MAXNUM := 8FIFor i = 0 to MAXNUM-1 {n := 32*i;DEST[n+31:n] := RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] + SRC2[n+31:n])}IF (VEX.128) THENDEST[MAXVL-1:128] := 0ELSEIF (VEX.256)DEST[MAXVL-1:256] := 0FIVFMADD213PS DEST, SRC2, SRC3 IF (VEX.128) THEN MAXNUM := 4ELSEIF (VEX.256)MAXNUM := 8FIFor i = 0 to MAXNUM-1 {n := 32*i;DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] + SRC3[n+31:n])}IF (VEX.128) THENDEST[MAXVL-1:128] := 0ELSEIF (VEX.256)DEST[MAXVL-1:256] := 0FIVFMADD231PS DEST, SRC2, SRC3 IF (VEX.128) THEN MAXNUM := 4ELSEIF (VEX.256)MAXNUM := 8FIFor i = 0 to MAXNUM-1 {n := 32*i;DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] + DEST[n+31:n])}IF (VEX.128) THENDEST[MAXVL-1:128] := 0ELSEIF (VEX.256)DEST[MAXVL-1:256] := 0FI

image/svg+xmlVFMADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)(KL, VL) = (4, 128), (8, 256), (16, 512)IF (VL = 512) AND (EVEX.b = 1)THENSET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);FI;FOR j := 0 TO KL-1i := j * 32IF k1[j] OR *no writemask*THEN DEST[i+31:i] := RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])ELSE IF *merging-masking*; merging-maskingTHEN *DEST[i+31:i] remains unchanged*ELSE ; zeroing-maskingDEST[i+31:i] := 0FIFI;ENDFORDEST[MAXVL-1:VL] := 0VFMADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)(KL, VL) = (4, 128), (8, 256), (16, 512)FOR j := 0 TO KL-1i := j * 32IF k1[j] OR *no writemask*THEN IF (EVEX.b = 1) THENDEST[i+31:i] := RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] + SRC2[i+31:i])ELSE DEST[i+31:i] := RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])FI;ELSE IF *merging-masking*; merging-maskingTHEN *DEST[i+31:i] remains unchanged*ELSE ; zeroing-maskingDEST[i+31:i] := 0FIFI;ENDFORDEST[MAXVL-1:VL] := 0

image/svg+xmlVFMADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)(KL, VL) = (4, 128), (8, 256), (16, 512)IF (VL = 512) AND (EVEX.b = 1)THENSET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);FI;FOR j := 0 TO KL-1i := j * 32IF k1[j] OR *no writemask*THEN DEST[i+31:i] := RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])ELSE IF *merging-masking*; merging-maskingTHEN *DEST[i+31:i] remains unchanged*ELSE ; zeroing-maskingDEST[i+31:i] := 0FIFI;ENDFORDEST[MAXVL-1:VL] := 0VFMADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)(KL, VL) = (4, 128), (8, 256), (16, 512)FOR j := 0 TO KL-1i := j * 32IF k1[j] OR *no writemask*THEN IF (EVEX.b = 1) THENDEST[i+31:i] := RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[31:0])ELSE DEST[i+31:i] := RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])FI;ELSE IF *merging-masking*; merging-maskingTHEN *DEST[i+31:i] remains unchanged*ELSE ; zeroing-maskingDEST[i+31:i] := 0FIFI;ENDFORDEST[MAXVL-1:VL] := 0

image/svg+xmlVFMADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)(KL, VL) = (4, 128), (8, 256), (16, 512)IF (VL = 512) AND (EVEX.b = 1)THENSET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);FI;FOR j := 0 TO KL-1i := j * 32IF k1[j] OR *no writemask*THEN DEST[i+31:i] := RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])ELSE IF *merging-masking*; merging-maskingTHEN *DEST[i+31:i] remains unchanged*ELSE ; zeroing-maskingDEST[i+31:i] := 0FIFI;ENDFORDEST[MAXVL-1:VL] := 0VFMADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)(KL, VL) = (4, 128), (8, 256), (16, 512)FOR j := 0 TO KL-1i := j * 32IF k1[j] OR *no writemask*THEN IF (EVEX.b = 1) THENDEST[i+31:i] := RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] + DEST[i+31:i])ELSE DEST[i+31:i] := RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])FI;ELSE IF *merging-masking*; merging-maskingTHEN *DEST[i+31:i] remains unchanged*ELSE ; zeroing-maskingDEST[i+31:i] := 0FIFI;ENDFORDEST[MAXVL-1:VL] := 0

image/svg+xmlIntel C/C++ Compiler Intrinsic EquivalentVFMADDxxxPS __m512 _mm512_fmadd_ps(__m512 a, __m512 b, __m512 c);VFMADDxxxPS __m512 _mm512_fmadd_round_ps(__m512 a, __m512 b, __m512 c, int r);VFMADDxxxPS __m512 _mm512_mask_fmadd_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);VFMADDxxxPS __m512 _mm512_maskz_fmadd_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);VFMADDxxxPS __m512 _mm512_mask3_fmadd_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);VFMADDxxxPS __m512 _mm512_mask_fmadd_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);VFMADDxxxPS __m512 _mm512_maskz_fmadd_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);VFMADDxxxPS __m512 _mm512_mask3_fmadd_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);VFMADDxxxPS __m256 _mm256_mask_fmadd_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);VFMADDxxxPS __m256 _mm256_maskz_fmadd_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);VFMADDxxxPS __m256 _mm256_mask3_fmadd_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);VFMADDxxxPS __m128 _mm_mask_fmadd_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);VFMADDxxxPS __m128 _mm_maskz_fmadd_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);VFMADDxxxPS __m128 _mm_mask3_fmadd_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);VFMADDxxxPS __m128 _mm_fmadd_ps (__m128 a, __m128 b, __m128 c);VFMADDxxxPS __m256 _mm256_fmadd_ps (__m256 a, __m256 b, __m256 c);SIMD Floating-Point ExceptionsOverflow, Underflow, Invalid, Precision, DenormalOther ExceptionsVEX-encoded instructions, see Table2-19, “Type 2 Class Exception Conditions”.EVEX-encoded instructions, see Table2-46, “Type E2 Class Exception Conditions”.

This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.