SHUFPS—Packed Interleave Shuffle of Quadruplets of Single-Precision Floating-Point ValuesInstruction Operand EncodingDescriptionSelects a single-precision floating-point value of an input quadruplet using a two-bit control and move to a desig-nated element of the destination operand. Each 64-bit element-pair of a 128-bit lane of the destination operand is interleaved between the corresponding lane of the first source operand and the second source operand at the gran-ularity 128 bits. Each two bits in the imm8 byte, starting from bit 0, is the select control of the corresponding element of a 128-bit lane of the destination to received the shuffled result of an input quadruplet. The two lower elements of a 128-bit lane in the destination receives shuffle results from the quadruple of the first source operand. The next two elements of the destination receives shuffle results from the quadruple of the second source operand. EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register updated according to the writemask. Imm8[7:0] provides 4 select controls for each applicable 128-bit lane of the destination.VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Imm8[7:0] provides 4 select controls for the high and low 128-bit of the destination.VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed. Imm8[7:0] provides 4 select controls for each element of the destination.Opcode/InstructionOp / En64/32 bit Mode SupportCPUID Feature FlagDescriptionNP 0F C6 /r ibSHUFPS xmm1, xmm3/m128, imm8AV/VSSESelect from quadruplet of single-precision floating-point values in xmm1 and xmm2/m128 using imm8, interleaved result pairs are stored in xmm1.VEX.128.0F.WIG C6 /r ibVSHUFPS xmm1, xmm2, xmm3/m128, imm8BV/VAVXSelect from quadruplet of single-precision floating-point values in xmm1 and xmm2/m128 using imm8, interleaved result pairs are stored in xmm1.VEX.256.0F.WIG C6 /r ibVSHUFPS ymm1, ymm2, ymm3/m256, imm8BV/VAVXSelect from quadruplet of single-precision floating-point values in ymm2 and ymm3/m256 using imm8, interleaved result pairs are stored in ymm1.EVEX.128.0F.W0 C6 /r ibVSHUFPS xmm1{k1}{z}, xmm2, xmm3/m128/m32bcst, imm8CV/VAVX512VLAVX512FSelect from quadruplet of single-precision floating-point values in xmm1 and xmm2/m128 using imm8, interleaved result pairs are stored in xmm1, subject to writemask k1.EVEX.256.0F.W0 C6 /r ibVSHUFPS ymm1{k1}{z}, ymm2, ymm3/m256/m32bcst, imm8CV/VAVX512VLAVX512FSelect from quadruplet of single-precision floating-point values in ymm2 and ymm3/m256 using imm8, interleaved result pairs are stored in ymm1, subject to writemask k1.EVEX.512.0F.W0 C6 /r ibVSHUFPS zmm1{k1}{z}, zmm2, zmm3/m512/m32bcst, imm8CV/VAVX512FSelect from quadruplet of single-precision floating-point values in zmm2 and zmm3/m512 using imm8, interleaved result pairs are stored in zmm1, subject to writemask k1.Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4ANAModRM:reg (r, w)ModRM:r/m (r)Imm8NABNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)Imm8CFullModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)Imm8
This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.