PMULDQ—Multiply Packed Doubleword IntegersInstruction Operand EncodingDescriptionMultiplies packed signed doubleword integers in the even-numbered (zero-based reference) elements of the first source operand with the packed signed doubleword integers in the corresponding elements of the second source operand and stores packed signed quadword results in the destination operand. 128-bit Legacy SSE version: The input signed doubleword integers are taken from the even-numbered elements of the source operands, i.e. the first (low) and third doubleword element. For 128-bit memory operands, 128 bits are fetched from memory, but only the first and third doublewords are used in the computation. The first source operand and the destination XMM operand is the same. The second source operand can be an XMM register or 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.VEX.128 encoded version: The input signed doubleword integers are taken from the even-numbered elements of the source operands, i.e., the first (low) and third doubleword element. For 128-bit memory operands, 128 bits are fetched from memory, but only the first and third doublewords are used in the computation.The first source operand and the destination operand are XMM registers. The second source operand can be an XMM register or 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination register are zeroed.VEX.256 encoded version: The input signed doubleword integers are taken from the even-numbered elements of the source operands, i.e. the first, 3rd, 5th, 7th doubleword element. For 256-bit memory operands, 256 bits are fetched from memory, but only the four even-numbered doublewords are used in the computation. The first source operand and the destination operand are YMM registers. The second source operand can be a YMM register or 256-bit memory location. Bits (MAXVL-1:256) of the corresponding destination ZMM register are zeroed.Opcode/InstructionOp / En64/32 bit Mode SupportCPUID Feature FlagDescription66 0F 38 28 /rPMULDQ xmm1, xmm2/m128AV/VSSE4_1Multiply packed signed doubleword integers in xmm1 by packed signed doubleword integers in xmm2/m128, and store the quadword results in xmm1.VEX.128.66.0F38.WIG 28 /rVPMULDQ xmm1, xmm2, xmm3/m128BV/VAVXMultiply packed signed doubleword integers in xmm2 by packed signed doubleword integers in xmm3/m128, and store the quadword results in xmm1.VEX.256.66.0F38.WIG 28 /rVPMULDQ ymm1, ymm2, ymm3/m256BV/VAVX2Multiply packed signed doubleword integers in ymm2 by packed signed doubleword integers in ymm3/m256, and store the quadword results in ymm1.EVEX.128.66.0F38.W1 28 /rVPMULDQ xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcstCV/VAVX512VLAVX512FMultiply packed signed doubleword integers in xmm2 by packed signed doubleword integers in xmm3/m128/m64bcst, and store the quadword results in xmm1 using writemask k1.EVEX.256.66.0F38.W1 28 /rVPMULDQ ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcstCV/VAVX512VLAVX512FMultiply packed signed doubleword integers in ymm2 by packed signed doubleword integers in ymm3/m256/m64bcst, and store the quadword results in ymm1 using writemask k1.EVEX.512.66.0F38.W1 28 /rVPMULDQ zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcstCV/VAVX512FMultiply packed signed doubleword integers in zmm2 by packed signed doubleword integers in zmm3/m512/m64bcst, and store the quadword results in zmm1 using writemask k1.Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4ANAModRM:reg (r, w)ModRM:r/m (r)NANABNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)NACFullModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NA
This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.