image/svg+xmlPMADDWD—Multiply and Add Packed IntegersInstruction Operand EncodingDescriptionMultiplies the individual signed words of the destination operand (first operand) by the corresponding signed words of the source operand (second operand), producing temporary signed, doubleword results. The adjacent double-word results are then summed and stored in the destination operand. For example, the corresponding low-order words (15-0) and (31-16) in the source and destination operands are multiplied by one another and the double-word results are added together and stored in the low doubleword of the destination register (31-0). The same operation is performed on the other pairs of adjacent words. (Figure4-11 shows this operation when using 64-bit operands).Opcode/InstructionOp/ En64/32 bit Mode SupportCPUID Feature FlagDescriptionNP 0F F5 /r1PMADDWD mm, mm/m64AV/VMMXMultiply the packed words in mm by the packed words in mm/m64, add adjacent doubleword results, and store in mm.66 0F F5 /rPMADDWD xmm1, xmm2/m128AV/VSSE2Multiply the packed word integers in xmm1 by the packed word integers in xmm2/m128, add adjacent doubleword results, and store in xmm1.VEX.128.66.0F.WIG F5 /rVPMADDWD xmm1, xmm2, xmm3/m128BV/VAVXMultiply the packed word integers in xmm2 by the packed word integers in xmm3/m128, add adjacent doubleword results, and store in xmm1.VEX.256.66.0F.WIG F5 /rVPMADDWD ymm1, ymm2, ymm3/m256BV/VAVX2Multiply the packed word integers in ymm2 by the packed word integers in ymm3/m256, add adjacent doubleword results, and store in ymm1.EVEX.128.66.0F.WIG F5 /rVPMADDWD xmm1 {k1}{z}, xmm2, xmm3/m128CV/VAVX512VLAVX512BWMultiply the packed word integers in xmm2 by the packed word integers in xmm3/m128, add adjacent doubleword results, and store in xmm1 under writemask k1.EVEX.256.66.0F.WIG F5 /rVPMADDWD ymm1 {k1}{z}, ymm2, ymm3/m256CV/VAVX512VLAVX512BWMultiply the packed word integers in ymm2 by the packed word integers in ymm3/m256, add adjacent doubleword results, and store in ymm1 under writemask k1.EVEX.512.66.0F.WIG F5 /rVPMADDWD zmm1 {k1}{z}, zmm2, zmm3/m512CV/VAVX512BWMultiply the packed word integers in zmm2 by the packed word integers in zmm3/m512, add adjacent doubleword results, and store in zmm1 under writemask k1.NOTES:1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4ANAModRM:reg (r, w)ModRM:r/m (r)NANABNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)NACFull MemModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NA

image/svg+xmlThe (V)PMADDWD instruction wraps around only in one situation: when the 2 pairs of words being operated on in a group are all 8000H. In this case, the result wraps around to 80000000H.In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).Legacy SSE version: The first source and destination operands are MMX registers. The second source operand is an MMX register or a 64-bit memory location. 128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-tion register remain unchanged.VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are zeroed. VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.EVEX.512 encoded version: The second source operand can be an ZMM register or a 512-bit memory location. The first source and destination operands are ZMM registers.OperationPMADDWD (with 64-bit operands)DEST[31:0] := (DEST[15:0] SRC[15:0]) + (DEST[31:16] SRC[31:16]);DEST[63:32] := (DEST[47:32] SRC[47:32]) + (DEST[63:48] SRC[63:48]);PMADDWD (with 128-bit operands)DEST[31:0] := (DEST[15:0] SRC[15:0]) + (DEST[31:16] SRC[31:16]);DEST[63:32] := (DEST[47:32] SRC[47:32]) + (DEST[63:48] SRC[63:48]);DEST[95:64] := (DEST[79:64] SRC[79:64]) + (DEST[95:80] SRC[95:80]);DEST[127:96] := (DEST[111:96] SRC[111:96]) + (DEST[127:112] SRC[127:112]);VPMADDWD (VEX.128 encoded version)DEST[31:0] := (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])DEST[63:32] := (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])DEST[95:64] := (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])DEST[127:96] := (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])DEST[MAXVL-1:128] := 0Figure 4-11. PMADDWD Execution Model Using 64-bit OperandsX3X2X1X0X3 Y3X2 Y2X1 Y1X0 Y0SRCDESTDESTY3Y2Y1Y0(X1Y1) + (X0Y0)(X3Y3) + (X2Y2) TEMP

image/svg+xmlVPMADDWD (VEX.256 encoded version)DEST[31:0] := (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])DEST[63:32] := (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])DEST[95:64] := (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])DEST[127:96] := (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])DEST[159:128] := (SRC1[143:128] * SRC2[143:128]) + (SRC1[159:144] * SRC2[159:144])DEST[191:160] := (SRC1[175:160] * SRC2[175:160]) + (SRC1[191:176] * SRC2[191:176])DEST[223:192] := (SRC1[207:192] * SRC2[207:192]) + (SRC1[223:208] * SRC2[223:208])DEST[255:224] := (SRC1[239:224] * SRC2[239:224]) + (SRC1[255:240] * SRC2[255:240])DEST[MAXVL-1:256] := 0VPMADDWD (EVEX encoded versions)(KL, VL) = (4, 128), (8, 256), (16, 512)FOR j := 0 TO KL-1i := j * 32IF k1[j] OR *no writemask*THEN DEST[i+31:i] := (SRC2[i+31:i+16]* SRC1[i+31:i+16]) + (SRC2[i+15:i]*SRC1[i+15:i])ELSE IF *merging-masking*; merging-maskingTHEN *DEST[i+31:i] remains unchanged*ELSE *zeroing-masking*; zeroing-maskingDEST[i+31:i] = 0FIFI;ENDFOR;DEST[MAXVL-1:VL] := 0Intel C/C++ Compiler Intrinsic EquivalentVPMADDWD __m512i _mm512_madd_epi16( __m512i a, __m512i b);VPMADDWD __m512i _mm512_mask_madd_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);VPMADDWD __m512i _mm512_maskz_madd_epi16( __mmask32 k, __m512i a, __m512i b);VPMADDWD __m256i _mm256_mask_madd_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);VPMADDWD __m256i _mm256_maskz_madd_epi16( __mmask16 k, __m256i a, __m256i b);VPMADDWD __m128i _mm_mask_madd_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);VPMADDWD __m128i _mm_maskz_madd_epi16( __mmask8 k, __m128i a, __m128i b);PMADDWD:__m64 _mm_madd_pi16(__m64 m1, __m64 m2)(V)PMADDWD:__m128i _mm_madd_epi16 ( __m128i a, __m128i b)VPMADDWD:__m256i _mm256_madd_epi16 ( __m256i a, __m256i b)Flags AffectedNone.Numeric ExceptionsNone.Other ExceptionsNon-EVEX-encoded instruction, see Table2-21, “Type 4 Class Exception Conditions”.EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table2-50, “Type E4NF Class Exception Conditions”.

This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.