PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than Opcode/ Instruction Op/ En 64/32 bit Mode Support CPUID Feature Flag Description NP 0F 64 / r 1 PCMPGTB mm, mm/m64 AV/VMMXCompare packed signed byte integers in mm and mm/m64 for greater than. 66 0F 64 / r PCMPGTB xmm1 , xmm2/m128 AV/VSSE2Compare packed signed byte integers in xmm1 and xmm2/m128 for greater than. NP 0F 65 / r 1 PCMPGTW mm, mm/m64 AV/VMMXCompare packed signed word integers in mm and mm/m64 for greater than. 66 0F 65 / r PCMPGTW xmm1 , xmm2/m128 AV/V SSE2Compare packed signed word integers in xmm1 and xmm2/m128 for greater than. NP 0F 66 / r 1 PCMPGTD mm, mm/m64 AV/V MMXCompare packed signed doubleword integers in mm and mm/m64 for greater than. 66 0F 66 / r PCMPGTD xmm1 , xmm2/m128 AV/VSSE2Compare packed signed doubleword integers in xmm1 and xmm2/m128 for greater than. VEX.128.66.0F.WIG 64 /r VPCMPGTB xmm1, xmm2, xmm3/m128 BV/VAVXCompare packed signed byte integers in xmm2 and xmm3/m128 for greater than. VEX.128.66.0F.WIG 65 /r VPCMPGTW xmm1, xmm2, xmm3/m128 BV/VAVXCompare packed signed word integers in xmm2 and xmm3/m128 for greater than. VEX.128.66.0F.WIG 66 /r VPCMPGTD xmm1, xmm2, xmm3/m128 BV/VAVXCompare packed signed doubleword integers in xmm2 and xmm3/m128 for greater than. VEX.256.66.0F.WIG 64 /r VPCMPGTB ymm1, ymm2, ymm3/m256 BV/VAVX2Compare packed signed byte integers in ymm2 and ymm3/m256 for greater than. VEX.256.66.0F.WIG 65 /r VPCMPGTW ymm1, ymm2, ymm3/m256 BV/VAVX2Compare packed signed word integers in ymm2 and ymm3/m256 for greater than. VEX.256.66.0F.WIG 66 /r VPCMPGTD ymm1, ymm2, ymm3/m256 BV/VAVX2Compare packed signed doubleword integers in ymm2 and ymm3/m256 for greater than. EVEX.128.66.0F.W0 66 /r VPCMPGTD k1 {k2}, xmm2, xmm3/m128/m32bcst CV/VAVX512VL AVX512F Compare Greater between int32 vector xmm2 and int32 vector xmm3/m128/m32bcst, and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. EVEX.256.66.0F.W0 66 /r VPCMPGTD k1 {k2}, ymm2, ymm3/m256/m32bcst CV/VAVX512VL AVX512F Compare Greater between int32 vector ymm2 and int32 vector ymm3/m256/m32bcst, and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. EVEX.512.66.0F.W0 66 /r VPCMPGTD k1 {k2}, zmm2, zmm3/m512/m32bcst CV/VAVX512FCompare Greater between int32 elements in zmm2 and zmm3/m512/m32bcst, and set destination k1 according to the comparison results under writemask. k2. EVEX.128.66.0F.WIG 64 /r VPCMPGTB k1 {k2}, xmm2, xmm3/m128 DV/VAVX512VL AVX512BW Compare packed signed byte integers in xmm2 and xmm3/m128 for greater than, and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. EVEX.256.66.0F.WIG 64 /r VPCMPGTB k1 {k2}, ymm2, ymm3/m256 DV/VAVX512VL AVX512BW Compare packed signed byte integers in ymm2 and ymm3/m256 for greater than, and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. image/svg+xml Instruction Operand Encoding Description Performs an SIMD signed compare for the greater value of the packed byte, word, or doubleword integers in the destination operand (first operand) and the source operand (second operand). If a data element in the destination operand is greater than the corresponding date element in the source operand, the corresponding data element in the destination operand is set to all 1s; otherwise, it is set to all 0s. The PCMPGTB instruction compares the corresponding signed byte integers in the destination and source oper- ands; the PCMPGTW instruction compares the corresponding signed word integers in the destination and source operands; and the PCMPGTD instruction compares the corresponding signed doubleword integers in the destina- tion and source operands. In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The destination operand can be an MMX technology register. 128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The first source operand and destination operand are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The first source operand and destination operand are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM register are zeroed. VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register. EVEX.512.66.0F.WIG 64 /r VPCMPGTB k1 {k2}, zmm2, zmm3/m512 DV/VAVX512BWCompare packed signed byte integers in zmm2 and zmm3/m512 for greater than, and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. EVEX.128.66.0F.WIG 65 /r VPCMPGTW k1 {k2}, xmm2, xmm3/m128 DV/VAVX512VL AVX512BW Compare packed signed word integers in xmm2 and xmm3/m128 for greater than, and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. EVEX.256.66.0F.WIG 65 /r VPCMPGTW k1 {k2}, ymm2, ymm3/m256 DV/VAVX512VL AVX512BW Compare packed signed word integers in ymm2 and ymm3/m256 for greater than, and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. EVEX.512.66.0F.WIG 65 /r VPCMPGTW k1 {k2}, zmm2, zmm3/m512 DV/VAVX512BWCompare packed signed word integers in zmm2 and zmm3/m512 for greater than, and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. NOTES: 1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A . Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (r, w)ModRM:r/m (r)NANA BNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)NA CFullModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NA DFull MemModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NA image/svg+xml EVEX encoded VPCMPGTD: The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand (first operand) is a mask register updated according to the writemask k2. EVEX encoded VPCMPGTB/W: The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand (first operand) is a mask register updated according to the writemask k2. Operation PCMPGTB (with 64-bit operands) IF DEST[7:0] > SRC[7:0] THEN DEST[7:0) := FFH; ELSE DEST[7:0] := 0; FI; (* Continue comparison of 2nd through 7th bytes in DEST and SRC *) IF DEST[63:56] > SRC[63:56] THEN DEST[63:56] := FFH; ELSE DEST[63:56] := 0; FI; COMPARE_BYTES_GREATER (SRC1, SRC2) IF SRC1[7:0] > SRC2[7:0] THEN DEST[7:0] := FFH; ELSE DEST[7:0] := 0; FI; (* Continue comparison of 2nd through 15th bytes in SRC1 and SRC2 *) IF SRC1[127:120] > SRC2[127:120] THEN DEST[127:120] := FFH; ELSE DEST[127:120] := 0; FI; COMPARE_WORDS_GREATER (SRC1, SRC2) IF SRC1[15:0] > SRC2[15:0] THEN DEST[15:0] := FFFFH; ELSE DEST[15:0] := 0; FI; (* Continue comparison of 2nd through 7th 16-bit words in SRC1 and SRC2 *) IF SRC1[127:112] > SRC2[127:112] THEN DEST[127:112] := FFFFH; ELSE DEST[127:112] := 0; FI; COMPARE_DWORDS_GREATER (SRC1, SRC2) IF SRC1[31:0] > SRC2[31:0] THEN DEST[31:0] := FFFFFFFFH; ELSE DEST[31:0] := 0; FI; (* Continue comparison of 2nd through 3rd 32-bit dwords in SRC1 and SRC2 *) IF SRC1[127:96] > SRC2[127:96] THEN DEST[127:96] := FFFFFFFFH; ELSE DEST[127:96] := 0; FI; PCMPGTB (with 128-bit operands) DEST[127:0] := COMPARE_BYTES_GREATER(DEST[127:0],SRC[127:0]) DEST[MAXVL-1:128] (Unmodified) VPCMPGTB (VEX.128 encoded version) DEST[127:0] := COMPARE_BYTES_GREATER(SRC1,SRC2) DEST[MAXVL-1:128] := 0 image/svg+xml VPCMPGTB (VEX.256 encoded version) DEST[127:0] := COMPARE_BYTES_GREATER(SRC1[127:0],SRC2[127:0]) DEST[255:128] := COMPARE_BYTES_GREATER(SRC1[255:128],SRC2[255:128]) DEST[MAXVL-1:256] := 0 VPCMPGTB (EVEX encoded versions) (KL, VL) = (16, 128), (32, 256), (64, 512) FOR j := 0 TO KL-1 i := j * 8 IF k2[j] OR *no writemask* THEN /* signed comparison */ CMP := SRC1[i+7:i] > SRC2[i+7:i]; IF CMP = TRUE THEN DEST[j] := 1; ELSE DEST[j] := 0; FI; ELSE DEST[j] := 0; zeroing-masking onlyFI; FI; ENDFOR DEST[MAX_KL-1:KL] := 0 PCMPGTW (with 64-bit operands) IF DEST[15:0] > SRC[15:0] THEN DEST[15:0] := FFFFH; ELSE DEST[15:0] := 0; FI; (* Continue comparison of 2nd and 3rd words in DEST and SRC *) IF DEST[63:48] > SRC[63:48] THEN DEST[63:48] := FFFFH; ELSE DEST[63:48] := 0; FI; PCMPGTW (with 128-bit operands) DEST[127:0] := COMPARE_WORDS_GREATER(DEST[127:0],SRC[127:0]) DEST[MAXVL-1:128] (Unmodified) VPCMPGTW (VEX.128 encoded version) DEST[127:0] := COMPARE_WORDS_GREATER(SRC1,SRC2) DEST[MAXVL-1:128] := 0 VPCMPGTW (VEX.256 encoded version) DEST[127:0] := COMPARE_WORDS_GREATER(SRC1[127:0],SRC2[127:0]) DEST[255:128] := COMPARE_WORDS_GREATER(SRC1[255:128],SRC2[255:128]) DEST[MAXVL-1:256] := 0 VPCMPGTW (EVEX encoded versions) (KL, VL) = (8, 128), (16, 256), (32, 512) FOR j := 0 TO KL-1 i := j * 16 IF k2[j] OR *no writemask* THEN /* signed comparison */ CMP := SRC1[i+15:i] > SRC2[i+15:i]; IF CMP = TRUE THEN DEST[j] := 1; ELSE DEST[j] := 0; FI; image/svg+xml ELSE DEST[j] := 0; zeroing-masking onlyFI; FI; ENDFOR DEST[MAX_KL-1:KL] := 0 PCMPGTD (with 64-bit operands) IF DEST[31:0] > SRC[31:0] THEN DEST[31:0] := FFFFFFFFH; ELSE DEST[31:0] := 0; FI; IF DEST[63:32] > SRC[63:32] THEN DEST[63:32] := FFFFFFFFH; ELSE DEST[63:32] := 0; FI; PCMPGTD (with 128-bit operands) DEST[127:0] := COMPARE_DWORDS_GREATER(DEST[127:0],SRC[127:0]) DEST[MAXVL-1:128] (Unmodified) VPCMPGTD (VEX.128 encoded version) DEST[127:0] := COMPARE_DWORDS_GREATER(SRC1,SRC2) DEST[MAXVL-1:128] := 0 VPCMPGTD (VEX.256 encoded version) DEST[127:0] := COMPARE_DWORDS_GREATER(SRC1[127:0],SRC2[127:0]) DEST[255:128] := COMPARE_DWORDS_GREATER(SRC1[255:128],SRC2[255:128]) DEST[MAXVL-1:256] := 0 VPCMPGTD (EVEX encoded versions) (KL, VL) = (4, 128), (8, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 32 IF k2[j] OR *no writemask* THEN /* signed comparison */ IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN CMP := SRC1[i+31:i] > SRC2[31:0]; ELSE CMP := SRC1[i+31:i] > SRC2[i+31:i]; FI; IF CMP = TRUE THEN DEST[j] := 1; ELSE DEST[j] := 0; FI; ELSE DEST[j] := 0; zeroing-masking only FI; ENDFOR DEST[MAX_KL-1:KL] := 0 image/svg+xml Intel C/C ++ Compiler Intrinsic Equivalents VPCMPGTB __mmask64 _mm512_cmpgt_epi8_mask(__m512i a, __m512i b); VPCMPGTB __mmask64 _mm512_mask_cmpgt_epi8_mask(__mmask64 k, __m512i a, __m512i b); VPCMPGTB __mmask32 _mm256_cmpgt_epi8_mask(__m256i a, __m256i b); VPCMPGTB __mmask32 _mm256_mask_cmpgt_epi8_mask(__mmask32 k, __m256i a, __m256i b); VPCMPGTB __mmask16 _mm_cmpgt_epi8_mask(__m128i a, __m128i b); VPCMPGTB __mmask16 _mm_mask_cmpgt_epi8_mask(__mmask16 k, __m128i a, __m128i b); VPCMPGTD __mmask16 _mm512_cmpgt_epi32_mask(__m512i a, __m512i b); VPCMPGTD __mmask16 _mm512_mask_cmpgt_epi32_mask(__mmask16 k, __m512i a, __m512i b); VPCMPGTD __mmask8 _mm256_cmpgt_epi32_mask(__m256i a, __m256i b); VPCMPGTD __mmask8 _mm256_mask_cmpgt_epi32_mask(__mmask8 k, __m256i a, __m256i b); VPCMPGTD __mmask8 _mm_cmpgt_epi32_mask(__m128i a, __m128i b); VPCMPGTD __mmask8 _mm_mask_cmpgt_epi32_mask(__mmask8 k, __m128i a, __m128i b); VPCMPGTW __mmask32 _mm512_cmpgt_epi16_mask(__m512i a, __m512i b); VPCMPGTW __mmask32 _mm512_mask_cmpgt_epi16_mask(__mmask32 k, __m512i a, __m512i b); VPCMPGTW __mmask16 _mm256_cmpgt_epi16_mask(__m256i a, __m256i b); VPCMPGTW __mmask16 _mm256_mask_cmpgt_epi16_mask(__mmask16 k, __m256i a, __m256i b); VPCMPGTW __mmask8 _mm_cmpgt_epi16_mask(__m128i a, __m128i b); VPCMPGTW __mmask8 _mm_mask_cmpgt_epi16_mask(__mmask8 k, __m128i a, __m128i b); PCMPGTB:__m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2) PCMPGTW:__m64 _mm_cmpgt_pi16 (__m64 m1, __m64 m2) PCMPGTD:__m64 _mm_cmpgt_pi32 (__m64 m1, __m64 m2) (V)PCMPGTB:__m128i _mm_cmpgt_epi8 ( __m128i a, __m128i b) (V)PCMPGTW:__m128i _mm_cmpgt_epi16 ( __m128i a, __m128i b) (V)DCMPGTD:__m128i _mm_cmpgt_epi32 ( __m128i a, __m128i b) VPCMPGTB:__m256i _mm256_cmpgt_epi8 ( __m256i a, __m256i b) VPCMPGTW:__m256i _mm256_cmpgt_epi16 ( __m256i a, __m256i b) VPCMPGTD:__m256i _mm256_cmpgt_epi32 ( __m256i a, __m256i b) Flags Affected None. Numeric Exceptions None. Other Exceptions Non-EVEX-encoded instruction, see Table2-21, “Type 4 Class Exception Conditions”. EVEX-encoded VPCMPGTD, see Table2-49, “Type E4 Class Exception Conditions”. EVEX-encoded VPCMPGTB/W, see Exceptions Type E4.nb in Table2-49, “Type E4 Class Exception Conditions”. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .