image/svg+xml PAND—Logical AND Instruction Operand Encoding Description Performs a bitwise logical AND operation on the first source operand and second source operand and stores the result in the destination operand. Each bit of the result is set to 1 if the corresponding bits of the first and second operands are 1, otherwise it is set to 0. In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). Opcode/ Instruction Op/ En 64/32 bit Mode Support CPUID Feature Flag Description NP 0F DB / r 1 PAND mm, mm/m64 AV/V MMXBitwise AND mm/m64 and mm . 66 0F DB / r PAND xmm1 , xmm2/m128 AV/VSSE2Bitwise AND of xmm2/m128 and xmm1 . VEX.128.66.0F.WIG DB /r VPAND xmm1, xmm2, xmm3/m128 BV/VAVXBitwise AND of xmm3/m128 and xmm . VEX.256.66.0F .WIG DB /r VPAND ymm1, ymm2, ymm3/.m256 BV/VAVX2Bitwise AND of ymm2 , and ymm3/m256 and store result in ymm1 . EVEX.128.66.0F.W0 DB /r VPANDD xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst CV/VAVX512VL AVX512F Bitwise AND of packed doubleword integers in xmm2 and xmm3/m128/m32bcst and store result in xmm1 using writemask k1. EVEX.256.66.0F.W0 DB /r VPANDD ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst CV/VAVX512VL AVX512F Bitwise AND of packed doubleword integers in ymm2 and ymm3/m256/m32bcst and store result in ymm1 using writemask k1. EVEX.512.66.0F.W0 DB / r VPANDD zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst CV/VAVX512FBitwise AND of packed doubleword integers in zmm2 and zmm3/m512/m32bcst and store result in zmm1 using writemask k1. EVEX.128.66.0F.W1 DB /r VPANDQ xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcst CV/VAVX512VL AVX512F Bitwise AND of packed quadword integers in xmm2 and xmm3/m128/m64bcst and store result in xmm1 using writemask k1. EVEX.256.66.0F.W1 DB /r VPANDQ ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst CV/VAVX512VL AVX512F Bitwise AND of packed quadword integers in ymm2 and ymm3/m256/m64bcst and store result in ymm1 using writemask k1. EVEX.512.66.0F.W1 DB / r VPANDQ zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst CV/VAVX512FBitwise AND of packed quadword integers in zmm2 and zmm3/m512/m64bcst and store result in zmm1 using writemask k1. NOTES: 1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A . Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (r, w)ModRM:r/m (r)NANA BNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)NA CFullModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NA image/svg+xml Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The destination operand can be an MMX technology register. 128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified. EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1 at 32/64-bit granularity. VEX.256 encoded versions: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed. VEX.128 encoded versions: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed. Operation PAND (64-bit operand) DEST := DEST AND SRC PAND (128-bit Legacy SSE version) DEST := DEST AND SRC DEST[MAXVL-1:128] (Unmodified) VPAND (VEX.128 encoded version) DEST := SRC1 AND SRC2 DEST[MAXVL-1:128] := 0 VPAND (VEX.256 encoded instruction) DEST[255:0] := (SRC1[255:0] AND SRC2[255:0]) DEST[MAXVL-1:256] := 0 VPANDD (EVEX encoded versions) (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN DEST[i+31:i] := SRC1[i+31:i] BITWISE AND SRC2[31:0] ELSE DEST[i+31:i] := SRC1[i+31:i] BITWISE AND SRC2[i+31:i] FI; ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 image/svg+xml VPANDQ (EVEX encoded versions) (KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN DEST[i+63:i] := SRC1[i+63:i] BITWISE AND SRC2[63:0] ELSE DEST[i+63:i] := SRC1[i+63:i] BITWISE AND SRC2[i+63:i] FI; ELSE IF *merging-masking*; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 Intel C/C++ Compiler Intrinsic Equivalents VPANDD __m512i _mm512_and_epi32( __m512i a, __m512i b); VPANDD __m512i _mm512_mask_and_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b); VPANDD __m512i _mm512_maskz_and_epi32( __mmask16 k, __m512i a, __m512i b); VPANDQ __m512i _mm512_and_epi64( __m512i a, __m512i b); VPANDQ __m512i _mm512_mask_and_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b); VPANDQ __m512i _mm512_maskz_and_epi64( __mmask8 k, __m512i a, __m512i b); VPANDND __m256i _mm256_mask_and_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b); VPANDND __m256i _mm256_maskz_and_epi32( __mmask8 k, __m256i a, __m256i b); VPANDND __m128i _mm_mask_and_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b); VPANDND __m128i _mm_maskz_and_epi32( __mmask8 k, __m128i a, __m128i b); VPANDNQ __m256i _mm256_mask_and_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b); VPANDNQ __m256i _mm256_maskz_and_epi64( __mmask8 k, __m256i a, __m256i b); VPANDNQ __m128i _mm_mask_and_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b); VPANDNQ __m128i _mm_maskz_and_epi64( __mmask8 k, __m128i a, __m128i b); PAND: __m64 _mm_and_si64 (__m64 m1, __m64 m2) (V)PAND:__m128i _mm_and_si128 ( __m128i a, __m128i b) VPAND:__m256i _mm256_and_si256 ( __m256i a, __m256i b) Flags Affected None. Numeric Exceptions None. Other Exceptions Non-EVEX-encoded instruction, see Table2-21, “Type 4 Class Exception Conditions”. EVEX-encoded instruction, see Table2-49, “Type E4 Class Exception Conditions”. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .