PACKUSDW—Pack with Unsigned Saturation Instruction Operand EncodingDescription Converts packed signed doubleword integers in the first and second source operands into packed unsigned word integers using unsigned saturation to handle overflow conditions. If the signed doubleword value is beyond the range of an unsigned word (that is, greater than FFFFH or less than 0000H), the saturated unsigned word integer value of FFFFH or 0000H, respectively, is stored in the destination.EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM register, updated conditionally under the writemask k1.VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed. VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding destination register destination are unmodified.Opcode/InstructionOp / En64/32 bit Mode SupportCPUID Feature FlagDescription66 0F 38 2B /rPACKUSDW xmm1, xmm2/m128AV/VSSE4_1Convert 4 packed signed doubleword integers from xmm1and 4 packed signed doubleword integers from xmm2/m128 into 8 packed unsigned word integers inxmm1 using unsigned saturation.VEX.128.66.0F38 2B /rVPACKUSDW xmm1,xmm2, xmm3/m128BV/VAVXConvert 4 packed signed doubleword integers from xmm2and 4 packed signed doubleword integers from xmm3/m128 into 8 packed unsigned word integers inxmm1 using unsigned saturation.VEX.256.66.0F38 2B /rVPACKUSDW ymm1, ymm2, ymm3/m256BV/VAVX2Convert 8 packed signed doubleword integers from ymm2and 8 packed signed doubleword integers from ymm3/m256 into 16 packed unsigned word integers inymm1 using unsigned saturation.EVEX.128.66.0F38.W0 2B /rVPACKUSDW xmm1{k1}{z}, xmm2, xmm3/m128/m32bcstCV/VAVX512VLAVX512BWConvert packed signed doubleword integers from xmm2 and packed signed doubleword integers from xmm3/m128/m32bcst into packed unsigned word integers in xmm1 using unsigned saturation under writemask k1.EVEX.256.66.0F38.W0 2B /rVPACKUSDW ymm1{k1}{z}, ymm2, ymm3/m256/m32bcstCV/VAVX512VLAVX512BWConvert packed signed doubleword integers from ymm2 and packed signed doubleword integers from ymm3/m256/m32bcst into packed unsigned word integers in ymm1 using unsigned saturation under writemask k1.EVEX.512.66.0F38.W0 2B /rVPACKUSDW zmm1{k1}{z}, zmm2, zmm3/m512/m32bcstCV/VAVX512BWConvert packed signed doubleword integers from zmm2and packed signed doubleword integers from zmm3/m512/m32bcst into packed unsigned word integers in zmm1 using unsigned saturation under writemask k1.Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4ANAModRM:reg (r, w)ModRM:r/m (r)NANABNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)NACFullModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NA
This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.