image/svg+xml MULPS—Multiply Packed Single-Precision Floating-Point Values Instruction Operand Encoding Description Multiply the packed single-precision floating-point values from the first source operand with the corresponding values in the second source operand, and stores the packed double-precision floating-point results in the destina- tion operand. EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Bits (MAXVL-1:256) of the corre- sponding destination ZMM register are zeroed. VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the destination YMM register destination are zeroed. 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti- nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified. Opcode/ Instruction Op / En 64/32 bit Mode Support CPUID Feature Flag Description NP 0F 59 /r MULPS xmm1, xmm2/m128 AV/VSSEMultiply packed single-precision floating-point values in xmm2/m128 with xmm1 and store result in xmm1. VEX.128.0F.WIG 59 /r VMULPS xmm1,xmm2, xmm3/m128 BV/VAVXMultiply packed single-precision floating-point values in xmm3/m128 with xmm2 and store result in xmm1. VEX.256.0F.WIG 59 /r VMULPS ymm1, ymm2, ymm3/m256 BV/VAVXMultiply packed single-precision floating-point values in ymm3/m256 with ymm2 and store result in ymm1. EVEX.128.0F.W0 59 /r VMULPS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst CV/VAVX512VL AVX512F Multiply packed single-precision floating-point values from xmm3/m128/m32bcst to xmm2 and store result in xmm1. EVEX.256.0F.W0 59 /r VMULPS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst CV/VAVX512VL AVX512F Multiply packed single-precision floating-point values from ymm3/m256/m32bcst to ymm2 and store result in ymm1. EVEX.512.0F.W0 59 /r VMULPS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst {er} CV/VAVX512FMultiply packed single-precision floating-point values in zmm3/m512/m32bcst with zmm2 and store result in zmm1. Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (r, w)ModRM:r/m (r)NANA BNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)NA CFullModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NA image/svg+xml Operation VMULPS (EVEX encoded version) (KL, VL) = (4, 128), (8, 256), (16, 512) IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register* THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN DEST[i+31:i] := SRC1[i+31:i] * SRC2[31:0] ELSE DEST[i+31:i] := SRC1[i+31:i] * SRC2[i+31:i] FI; ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VMULPS (VEX.256 encoded version) DEST[31:0] := SRC1[31:0] * SRC2[31:0] DEST[63:32] := SRC1[63:32] * SRC2[63:32] DEST[95:64] := SRC1[95:64] * SRC2[95:64] DEST[127:96] := SRC1[127:96] * SRC2[127:96] DEST[159:128] := SRC1[159:128] * SRC2[159:128] DEST[191:160] := SRC1[191:160] * SRC2[191:160] DEST[223:192] := SRC1[223:192] * SRC2[223:192] DEST[255:224] := SRC1[255:224] * SRC2[255:224]. DEST[MAXVL-1:256] := 0; VMULPS (VEX.128 encoded version) DEST[31:0] := SRC1[31:0] * SRC2[31:0] DEST[63:32] := SRC1[63:32] * SRC2[63:32] DEST[95:64] := SRC1[95:64] * SRC2[95:64] DEST[127:96] := SRC1[127:96] * SRC2[127:96] DEST[MAXVL-1:128] := 0 MULPS (128-bit Legacy SSE version) DEST[31:0] := SRC1[31:0] * SRC2[31:0] DEST[63:32] := SRC1[63:32] * SRC2[63:32] DEST[95:64] := SRC1[95:64] * SRC2[95:64] DEST[127:96] := SRC1[127:96] * SRC2[127:96] DEST[MAXVL-1:128] (Unmodified) image/svg+xml Intel C/C++ Compiler Intrinsic Equivalent VMULPS __m512 _mm512_mul_ps( __m512 a, __m512 b); VMULPS __m512 _mm512_mask_mul_ps(__m512 s, __mmask16 k, __m512 a, __m512 b); VMULPS __m512 _mm512_maskz_mul_ps(__mmask16 k, __m512 a, __m512 b); VMULPS __m512 _mm512_mul_round_ps( __m512 a, __m512 b, int); VMULPS __m512 _mm512_mask_mul_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int); VMULPS __m512 _mm512_maskz_mul_round_ps(__mmask16 k, __m512 a, __m512 b, int); VMULPS __m256 _mm256_mask_mul_ps(__m256 s, __mmask8 k, __m256 a, __m256 b); VMULPS __m256 _mm256_maskz_mul_ps(__mmask8 k, __m256 a, __m256 b); VMULPS __m128 _mm_mask_mul_ps(__m128 s, __mmask8 k, __m128 a, __m128 b); VMULPS __m128 _mm_maskz_mul_ps(__mmask8 k, __m128 a, __m128 b); VMULPS __m256 _mm256_mul_ps (__m256 a, __m256 b); MULPS __m128 _mm_mul_ps (__m128 a, __m128 b); SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal Other Exceptions Non-EVEX-encoded instruction, see Table2-19, “Type 2 Class Exception Conditions”. EVEX-encoded instruction, see Table2-46, “Type E2 Class Exception Conditions”. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .