image/svg+xml MOVDQA,VMOVDQA32/64—Move Aligned Packed Integer Values Opcode/ Instruction Op/En64/32 bit Mode Support CPUID Feature Flag Description 66 0F 6F /r MOVDQA xmm1, xmm2/m128 AV/VSSE2Move aligned packed integer values from xmm2/mem to xmm1. 66 0F 7F /r MOVDQA xmm2/m128, xmm1 BV/VSSE2Move aligned packed integer values from xmm1 to xmm2/mem. VEX.128.66.0F.WIG 6F /r VMOVDQA xmm1, xmm2/m128 AV/VAVXMove aligned packed integer values from xmm2/mem to xmm1. VEX.128.66.0F.WIG 7F /r VMOVDQA xmm2/m128, xmm1 BV/VAVXMove aligned packed integer values from xmm1 to xmm2/mem. VEX.256.66.0F.WIG 6F /r VMOVDQA ymm1, ymm2/m256 AV/VAVXMove aligned packed integer values from ymm2/mem to ymm1. VEX.256.66.0F.WIG 7F /r VMOVDQA ymm2/m256, ymm1 BV/VAVXMove aligned packed integer values from ymm1 to ymm2/mem. EVEX.128.66.0F.W0 6F /r VMOVDQA32 xmm1 {k1}{z}, xmm2/m128 CV/VAVX512VL AVX512F Move aligned packed doubleword integer values from xmm2/m128 to xmm1 using writemask k1. EVEX.256.66.0F.W0 6F /r VMOVDQA32 ymm1 {k1}{z}, ymm2/m256 CV/VAVX512VL AVX512F Move aligned packed doubleword integer values from ymm2/m256 to ymm1 using writemask k1. EVEX.512.66.0F.W0 6F /r VMOVDQA32 zmm1 {k1}{z}, zmm2/m512 CV/VAVX512FMove aligned packed doubleword integer values from zmm2/m512 to zmm1 using writemask k1. EVEX.128.66.0F.W0 7F /r VMOVDQA32 xmm2/m128 {k1}{z}, xmm1 DV/VAVX512VL AVX512F Move aligned packed doubleword integer values from xmm1 to xmm2/m128 using writemask k1. EVEX.256.66.0F.W0 7F /r VMOVDQA32 ymm2/m256 {k1}{z}, ymm1 DV/VAVX512VL AVX512F Move aligned packed doubleword integer values from ymm1 to ymm2/m256 using writemask k1. EVEX.512.66.0F.W0 7F /r VMOVDQA32 zmm2/m512 {k1}{z}, zmm1 DV/VAVX512FMove aligned packed doubleword integer values from zmm1 to zmm2/m512 using writemask k1. EVEX.128.66.0F.W1 6F /r VMOVDQA64 xmm1 {k1}{z}, xmm2/m128 CV/VAVX512VL AVX512F Move aligned packed quadword integer values from xmm2/m128 to xmm1 using writemask k1. EVEX.256.66.0F.W1 6F /r VMOVDQA64 ymm1 {k1}{z}, ymm2/m256 CV/VAVX512VL AVX512F Move aligned packed quadword integer values from ymm2/m256 to ymm1 using writemask k1. EVEX.512.66.0F.W1 6F /r VMOVDQA64 zmm1 {k1}{z}, zmm2/m512 CV/VAVX512FMove aligned packed quadword integer values from zmm2/m512 to zmm1 using writemask k1. EVEX.128.66.0F.W1 7F /r VMOVDQA64 xmm2/m128 {k1}{z}, xmm1 DV/VAVX512VL AVX512F Move aligned packed quadword integer values from xmm1 to xmm2/m128 using writemask k1. EVEX.256.66.0F.W1 7F /r VMOVDQA64 ymm2/m256 {k1}{z}, ymm1 DV/VAVX512VL AVX512F Move aligned packed quadword integer values from ymm1 to ymm2/m256 using writemask k1. EVEX.512.66.0F.W1 7F /r VMOVDQA64 zmm2/m512 {k1}{z}, zmm1 DV/VAVX512FMove aligned packed quadword integer values from zmm1 to zmm2/m512 using writemask k1. image/svg+xml Instruction Operand Encoding Description Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD. EVEX encoded versions: Moves 128, 256 or 512 bits of packed doubleword/quadword integer values from the source operand (the second operand) to the destination operand (the first operand). This instruction can be used to load a vector register from an int32/int64 memory location, to store the contents of a vector register into an int32/int64 memory location, or to move data between two ZMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 16 (EVEX.128)/32(EVEX.256)/64(EVEX.512)-byte boundary or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory locations, use the VMOVDQU instruction. The destination operand is updated at 32-bit (VMOVDQA32) or 64-bit (VMOVDQA64) granularity according to the writemask. VEX.256 encoded version: Moves 256 bits of packed integer values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte boundary or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory locations, use the VMOVDQU instruction. Bits (MAXVL-1:256) of the destination register are zeroed. 128-bit versions: Moves 128 bits of packed integer values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory locations, use the VMOVDQU instruction. 128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding ZMM destination register remain unchanged. VEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed. Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (w)ModRM:r/m (r)NANA BNAModRM:r/m (w)ModRM:reg (r)NANA CFull MemModRM:reg (w)ModRM:r/m (r)NANA DFull MemModRM:r/m (w)ModRM:reg (r)NANA image/svg+xml Operation VMOVDQA32 (EVEX encoded versions, register-copy form) (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := SRC[i+31:i] ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE DEST[i+31:i] := 0 ; zeroing-masking FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VMOVDQA32 (EVEX encoded versions, store-form) (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := SRC[i+31:i] ELSE *DEST[i+31:i] remains unchanged*; merging-masking FI; ENDFOR; VMOVDQA32 (EVEX encoded versions, load-form) (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := SRC[i+31:i] ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE DEST[i+31:i] := 0 ; zeroing-masking FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 image/svg+xml VMOVDQA64 (EVEX encoded versions, register-copy form) (KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := SRC[i+63:i] ELSE IF *merging-masking*; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE DEST[i+63:i] := 0 ; zeroing-masking FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VMOVDQA64 (EVEX encoded versions, store-form) (KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := SRC[i+63:i] ELSE *DEST[i+63:i] remains unchanged*; merging-masking FI; ENDFOR; VMOVDQA64 (EVEX encoded versions, load-form) (KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := SRC[i+63:i] ELSE IF *merging-masking*; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE DEST[i+63:i] := 0 ; zeroing-masking FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VMOVDQA (VEX.256 encoded version, load - and register copy) DEST[255:0] := SRC[255:0] DEST[MAXVL-1:256] := 0 VMOVDQA (VEX.256 encoded version, store-form) DEST[255:0] := SRC[255:0] VMOVDQA (VEX.128 encoded version) DEST[127:0] := SRC[127:0] DEST[MAXVL-1:128] := 0 VMOVDQA (128-bit load- and register-copy- form Legacy SSE version) DEST[127:0] := SRC[127:0] DEST[MAXVL-1:128] (Unmodified) image/svg+xml (V)MOVDQA (128-bit store-form version) DEST[127:0] := SRC[127:0] Intel C/C++ Compiler Intrinsic Equivalent VMOVDQA32 __m512i _mm512_load_epi32( void * sa); VMOVDQA32 __m512i _mm512_mask_load_epi32(__m512i s, __mmask16 k, void * sa); VMOVDQA32 __m512i _mm512_maskz_load_epi32( __mmask16 k, void * sa); VMOVDQA32 void _mm512_store_epi32(void * d, __m512i a); VMOVDQA32 void _mm512_mask_store_epi32(void * d, __mmask16 k, __m512i a); VMOVDQA32 __m256i _mm256_mask_load_epi32(__m256i s, __mmask8 k, void * sa); VMOVDQA32 __m256i _mm256_maskz_load_epi32( __mmask8 k, void * sa); VMOVDQA32 void _mm256_store_epi32(void * d, __m256i a); VMOVDQA32 void _mm256_mask_store_epi32(void * d, __mmask8 k, __m256i a); VMOVDQA32 __m128i _mm_mask_load_epi32(__m128i s, __mmask8 k, void * sa); VMOVDQA32 __m128i _mm_maskz_load_epi32( __mmask8 k, void * sa); VMOVDQA32 void _mm_store_epi32(void * d, __m128i a); VMOVDQA32 void _mm_mask_store_epi32(void * d, __mmask8 k, __m128i a); VMOVDQA64 __m512i _mm512_load_epi64( void * sa); VMOVDQA64 __m512i _mm512_mask_load_epi64(__m512i s, __mmask8 k, void * sa); VMOVDQA64 __m512i _mm512_maskz_load_epi64( __mmask8 k, void * sa); VMOVDQA64 void _mm512_store_epi64(void * d, __m512i a); VMOVDQA64 void _mm512_mask_store_epi64(void * d, __mmask8 k, __m512i a); VMOVDQA64 __m256i _mm256_mask_load_epi64(__m256i s, __mmask8 k, void * sa); VMOVDQA64 __m256i _mm256_maskz_load_epi64( __mmask8 k, void * sa); VMOVDQA64 void _mm256_store_epi64(void * d, __m256i a); VMOVDQA64 void _mm256_mask_store_epi64(void * d, __mmask8 k, __m256i a); VMOVDQA64 __m128i _mm_mask_load_epi64(__m128i s, __mmask8 k, void * sa); VMOVDQA64 __m128i _mm_maskz_load_epi64( __mmask8 k, void * sa); VMOVDQA64 void _mm_store_epi64(void * d, __m128i a); VMOVDQA64 void _mm_mask_store_epi64(void * d, __mmask8 k, __m128i a); MOVDQA void __m256i _mm256_load_si256 (__m256i * p); MOVDQA _mm256_store_si256(_m256i *p, __m256i a); MOVDQA __m128i _mm_load_si128 (__m128i * p); MOVDQA void _mm_store_si128(__m128i *p, __m128i a); SIMD Floating-Point Exceptions None Other Exceptions Non-EVEX-encoded instruction, see Exceptions Type1.SSE2 in Table2-18, “Type 1 Class Exception Conditions”. EVEX-encoded instruction, see Table2-44, “Type E1 Class Exception Conditions”. Additionally: #UDIf EVEX.vvvv != 1111B or VEX.vvvv != 1111B. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .