image/svg+xml MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values Instruction Operand Encoding Opcode/ Instruction Op/En64/32 bit Mode Support CPUID Feature Flag Description 66 0F 28 /r MOVAPD xmm1, xmm2/m128 AV/VSSE2Move aligned packed double-precision floating- point values from xmm2/mem to xmm1. 66 0F 29 /r MOVAPD xmm2/m128, xmm1 BV/VSSE2Move aligned packed double-precision floating- point values from xmm1 to xmm2/mem. VEX.128.66.0F.WIG 28 /r VMOVAPD xmm1, xmm2/m128 AV/VAVXMove aligned packed double-precision floating- point values from xmm2/mem to xmm1. VEX.128.66.0F.WIG 29 /r VMOVAPD xmm2/m128, xmm1 BV/VAVXMove aligned packed double-precision floating- point values from xmm1 to xmm2/mem. VEX.256.66.0F.WIG 28 /r VMOVAPD ymm1, ymm2/m256 AV/VAVXMove aligned packed double-precision floating- point values from ymm2/mem to ymm1. VEX.256.66.0F.WIG 29 /r VMOVAPD ymm2/m256, ymm1 BV/VAVXMove aligned packed double-precision floating- point values from ymm1 to ymm2/mem. EVEX.128.66.0F.W1 28 /r VMOVAPD xmm1 {k1}{z}, xmm2/m128 CV/VAVX512VL AVX512F Move aligned packed double-precision floating- point values from xmm2/m128 to xmm1 using writemask k1. EVEX.256.66.0F.W1 28 /r VMOVAPD ymm1 {k1}{z}, ymm2/m256 CV/VAVX512VL AVX512F Move aligned packed double-precision floating- point values from ymm2/m256 to ymm1 using writemask k1. EVEX.512.66.0F.W1 28 /r VMOVAPD zmm1 {k1}{z}, zmm2/m512 CV/VAVX512FMove aligned packed double-precision floating- point values from zmm2/m512 to zmm1 using writemask k1. EVEX.128.66.0F.W1 29 /r VMOVAPD xmm2/m128 {k1}{z}, xmm1 DV/VAVX512VL AVX512F Move aligned packed double-precision floating- point values from xmm1 to xmm2/m128 using writemask k1. EVEX.256.66.0F.W1 29 /r VMOVAPD ymm2/m256 {k1}{z}, ymm1 DV/VAVX512VL AVX512F Move aligned packed double-precision floating- point values from ymm1 to ymm2/m256 using writemask k1. EVEX.512.66.0F.W1 29 /r VMOVAPD zmm2/m512 {k1}{z}, zmm1 DV/VAVX512FMove aligned packed double-precision floating- point values from zmm1 to zmm2/m512 using writemask k1. Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (w)ModRM:r/m (r)NANA BNAModRM:r/m (w)ModRM:reg (r)NANA CFull MemModRM:reg (w)ModRM:r/m (r)NANA DFull MemModRM:r/m (w)ModRM:reg (r)NANA image/svg+xml Description Moves 2, 4 or 8 double-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM, YMM or ZMM register from an 128-bit, 256- bit or 512-bit memory location, to store the contents of an XMM, YMM or ZMM register into a 128-bit, 256-bit or 512-bit memory location, or to move data between two XMM, two YMM or two ZMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte (128-bit versions), 32-byte (256-bit version) or 64-byte (EVEX.512 encoded version) boundary or a general-protection exception (#GP) will be generated. For EVEX encoded versions, the operand must be aligned to the size of the memory operand. To move double-precision floating-point values to and from unaligned memory locations, use the VMOVUPD instruction. Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD. EVEX.512 encoded version: Moves 512 bits of packed double-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a ZMM register from a 512-bit float64 memory location, to store the contents of a ZMM register into a 512-bit float64 memory location, or to move data between two ZMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 64-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating-point values to and from unaligned memory locations, use the VMOVUPD instruction. VEX.256 and EVEX.256 encoded versions: Moves 256 bits of packed double-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte boundary or a general-protection exception (#GP) will be generated. To move double-precision floating-point values to and from unaligned memory locations, use the VMOVUPD instruction. 128-bit versions: Moves 128 bits of packed double-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating- point values to and from unaligned memory locations, use the VMOVUPD instruction. 128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding ZMM destination register remain unchanged. (E)VEX.128 encoded version: Bits (MAXVL-1:128) of the destination ZMM register destination are zeroed. Operation VMOVAPD (EVEX encoded versions, register-copy form) (KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := SRC[i+63:i] ELSE IF *merging-masking*; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE DEST[i+63:i] := 0 ; zeroing-masking FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 image/svg+xml VMOVAPD (EVEX encoded versions, store-form) (KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := SRC[i+63:i] ELSE ELSE *DEST[i+63:i] remains unchanged*; merging-masking FI; ENDFOR; VMOVAPD (EVEX encoded versions, load-form) (KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := SRC[i+63:i] ELSE IF *merging-masking*; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE DEST[i+63:i] := 0 ; zeroing-masking FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VMOVAPD (VEX.256 encoded version, load - and register copy) DEST[255:0] := SRC[255:0] DEST[MAXVL-1:256] := 0 VMOVAPD (VEX.256 encoded version, store-form) DEST[255:0] := SRC[255:0] VMOVAPD (VEX.128 encoded version, load - and register copy) DEST[127:0] := SRC[127:0] DEST[MAXVL-1:128] := 0 MOVAPD (128-bit load- and register-copy- form Legacy SSE version) DEST[127:0] := SRC[127:0] DEST[MAXVL-1:128] (Unmodified) (V)MOVAPD (128-bit store-form version) DEST[127:0] := SRC[127:0] image/svg+xml Intel C/C++ Compiler Intrinsic Equivalent VMOVAPD __m512d _mm512_load_pd( void * m); VMOVAPD __m512d _mm512_mask_load_pd(__m512d s, __mmask8 k, void * m); VMOVAPD __m512d _mm512_maskz_load_pd( __mmask8 k, void * m); VMOVAPD void _mm512_store_pd( void * d, __m512d a); VMOVAPD void _mm512_mask_store_pd( void * d, __mmask8 k, __m512d a); VMOVAPD __m256d _mm256_mask_load_pd(__m256d s, __mmask8 k, void * m); VMOVAPD __m256d _mm256_maskz_load_pd( __mmask8 k, void * m); VMOVAPD void _mm256_mask_store_pd( void * d, __mmask8 k, __m256d a); VMOVAPD __m128d _mm_mask_load_pd(__m128d s, __mmask8 k, void * m); VMOVAPD __m128d _mm_maskz_load_pd( __mmask8 k, void * m); VMOVAPD void _mm_mask_store_pd( void * d, __mmask8 k, __m128d a); MOVAPD __m256d _mm256_load_pd (double * p); MOVAPD void _mm256_store_pd(double * p, __m256d a); MOVAPD __m128d _mm_load_pd (double * p); MOVAPD void _mm_store_pd(double * p, __m128d a); SIMD Floating-Point Exceptions None Other Exceptions Non-EVEX-encoded instruction, see Exceptions Type1.SSE2 in Table2-18, “Type 1 Class Exception Conditions”. EVEX-encoded instruction, see Table2-44, “Type E1 Class Exception Conditions”. Additionally: #UDIf EVEX.vvvv != 1111B or VEX.vvvv != 1111B. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .