MINPD—Minimum of Packed Double-Precision Floating-Point ValuesInstruction Operand EncodingDescriptionPerforms a SIMD compare of the packed double-precision floating-point values in the first source operand and the second source operand and returns the minimum value for each pair of values to the destination operand. If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is returned. If a value in the second operand is an SNaN, then SNaN is forwarded unchanged to the destination (that is, a QNaN version of the SNaN is not returned). If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source operand (from either the first or second operand) be returned, the action of MINPD can be emulated using a sequence of instructions, such as, a comparison followed by AND, ANDN and OR. EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed.VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.Opcode/InstructionOp / En64/32 bit Mode SupportCPUID Feature FlagDescription66 0F 5D /rMINPD xmm1, xmm2/m128AV/VSSE2Return the minimum double-precision floating-point values between xmm1 and xmm2/mem VEX.128.66.0F.WIG 5D /rVMINPD xmm1, xmm2, xmm3/m128BV/VAVXReturn the minimum double-precision floating-point values between xmm2 and xmm3/mem. VEX.256.66.0F.WIG 5D /rVMINPD ymm1, ymm2, ymm3/m256BV/VAVXReturn the minimum packed double-precision floating-point values between ymm2 and ymm3/mem.EVEX.128.66.0F.W1 5D /rVMINPD xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcstCV/VAVX512VLAVX512FReturn the minimum packed double-precision floating-point values between xmm2 and xmm3/m128/m64bcst and store result in xmm1 subject to writemask k1.EVEX.256.66.0F.W1 5D /rVMINPD ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcstCV/VAVX512VLAVX512FReturn the minimum packed double-precision floating-point values between ymm2 and ymm3/m256/m64bcst and store result in ymm1 subject to writemask k1.EVEX.512.66.0F.W1 5D /rVMINPD zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst{sae}CV/VAVX512FReturn the minimum packed double-precision floating-point values between zmm2 and zmm3/m512/m64bcst and store result in zmm1 subject to writemask k1.Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4ANAModRM:reg (r, w)ModRM:r/m (r)NANABNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)NACFullModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NA
This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.