image/svg+xml GF2P8AFFINEQB—Galois Field Affine Transformation Instruction Operand Encoding Description The AFFINEB instruction computes an affine transformation in the Galois Field 2 8 . For this instruction, an affine transformation is defined by A * x + b where “A” is an 8 by 8 bit matrix, and “x” and “b” are 8-bit vectors. One SIMD register (operand 1) holds “x” as either 16, 32 or 64 8-bit vectors. A second SIMD (operand 2) register or memory operand contains 2, 4, or 8 “A” values, which are operated upon by the correspondingly aligned 8 “x” values in the first register. The “b” vector is constant for all calculations and contained in the immediate byte. The EVEX encoded form of this instruction does not support memory fault suppression. The SSE encoded forms of the instruction require16B alignment on their memory operations. Operation define parity(x): t := 0 // single bit FOR i := 0 to 7: t = t xor x.bit[i] return t define affine_byte(tsrc2qw, src1byte, imm): FOR i := 0 to 7: * parity(x) = 1 if x has an odd number of 1s in it, and 0 otherwise.* retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i] return retbyte Opcode/ Instruction Op/ En 64/32 bit Mode Support CPUID Feature Flag Description 66 0F3A CE /r /ib GF2P8AFFINEQB xmm1, xmm2/m128, imm8 AV/VGFNIComputes affine transformation in the finite field GF(2^8). VEX.128.66.0F3A.W1 CE /r /ib VGF2P8AFFINEQB xmm1, xmm2, xmm3/m128, imm8 BV/VAVX GFNI Computes affine transformation in the finite field GF(2^8). VEX.256.66.0F3A.W1 CE /r /ib VGF2P8AFFINEQB ymm1, ymm2, ymm3/m256, imm8 BV/VAVX GFNI Computes affine transformation in the finite field GF(2^8). EVEX.128.66.0F3A.W1 CE /r /ib VGF2P8AFFINEQB xmm1{k1}{z}, xmm2, xmm3/m128/m64bcst, imm8 CV/VAVX512VL GFNI Computes affine transformation in the finite field GF(2^8). EVEX.256.66.0F3A.W1 CE /r /ib VGF2P8AFFINEQB ymm1{k1}{z}, ymm2, ymm3/m256/m64bcst, imm8 CV/VAVX512VL GFNI Computes affine transformation in the finite field GF(2^8). EVEX.512.66.0F3A.W1 CE /r /ib VGF2P8AFFINEQB zmm1{k1}{z}, zmm2, zmm3/m512/m64bcst, imm8 CV/VAVX512F GFNI Computes affine transformation in the finite field GF(2^8). Op/EnTupleOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (r, w)ModRM:r/m (r)imm8 (r)NA BNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)imm8 (r) CFullModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)imm8 (r) image/svg+xml VGF2P8AFFINEQB dest, src1, src2, imm8 (EVEX encoded version) (KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1: IF SRC2 is memory and EVEX.b==1: tsrc2 := SRC2.qword[0] ELSE: tsrc2 := SRC2.qword[j] FOR b := 0 to 7: IF k1[j*8+b] OR *no writemask*: DEST.qword[j].byte[b] := affine_byte(tsrc2, SRC1.qword[j].byte[b], imm8) ELSE IF *zeroing*: DEST.qword[j].byte[b] := 0 *ELSE DEST.qword[j].byte[b] remains unchanged* DEST[MAX_VL-1:VL] := 0 VGF2P8AFFINEQB dest, src1, src2, imm8 (128b and 256b VEX encoded versions) (KL, VL) = (2, 128), (4, 256) FOR j := 0 TO KL-1: FOR b := 0 to 7: DEST.qword[j].byte[b] := affine_byte(SRC2.qword[j], SRC1.qword[j].byte[b], imm8) DEST[MAX_VL-1:VL] := 0 GF2P8AFFINEQB srcdest, src1, imm8 (128b SSE encoded version) FOR j := 0 TO 1: FOR b := 0 to 7: SRCDEST.qword[j].byte[b] := affine_byte(SRC1.qword[j], SRCDEST.qword[j].byte[b], imm8) Intel C/C++ Compiler Intrinsic Equivalent (V)GF2P8AFFINEQB __m128i _mm_gf2p8affine_epi64_epi8(__m128i, __m128i, int); (V)GF2P8AFFINEQB __m128i _mm_mask_gf2p8affine_epi64_epi8(__m128i, __mmask16, __m128i, __m128i, int); (V)GF2P8AFFINEQB __m128i _mm_maskz_gf2p8affine_epi64_epi8(__mmask16, __m128i, __m128i, int); VGF2P8AFFINEQB __m256i _mm256_gf2p8affine_epi64_epi8(__m256i, __m256i, int); VGF2P8AFFINEQB __m256i _mm256_mask_gf2p8affine_epi64_epi8(__m256i, __mmask32, __m256i, __m256i, int); VGF2P8AFFINEQB __m256i _mm256_maskz_gf2p8affine_epi64_epi8(__mmask32, __m256i, __m256i, int); VGF2P8AFFINEQB __m512i _mm512_gf2p8affine_epi64_epi8(__m512i, __m512i, int); VGF2P8AFFINEQB __m512i _mm512_mask_gf2p8affine_epi64_epi8(__m512i, __mmask64, __m512i, __m512i, int); VGF2P8AFFINEQB __m512i _mm512_maskz_gf2p8affine_epi64_epi8(__mmask64, __m512i, __m512i, int); SIMD Floating-Point Exceptions None. Other Exceptions Legacy-encoded and VEX-encoded: See Table2-21, “Type 4 Class Exception Conditions”. EVEX-encoded: See Table2-50, “Type E4NF Class Exception Conditions”. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .