image/svg+xml DIVSD—Divide Scalar Double-Precision Floating-Point Value Instruction Operand Encoding Description Divides the low double-precision floating-point value in the first source operand by the low double-precision floating-point value in the second source operand, and stores the double-precision floating-point result in the desti- nation operand. The second source operand can be an XMM register or a 64-bit memory location. The first source and destination are XMM registers. 128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL- 1:64) of the corresponding ZMM destination register remain unchanged. VEX.128 encoded version: The first source operand is an xmm register encoded by VEX.vvvv. The quadword at bits 127:64 of the destination operand is copied from the corresponding quadword of the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed. EVEX.128 encoded version: The first source operand is an xmm register encoded by EVEX.vvvv. The quadword element of the destination operand at bits 127:64 are copied from the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed. EVEX version: The low quadword element of the destination is updated according to the writemask. Software should ensure VDIVSD is encoded with VEX.L=0. Encoding VDIVSD with VEX.L=1 may encounter unpre- dictable behavior across different processor generations. Opcode/ Instruction Op / En 64/32 bit Mode Support CPUID Feature Flag Description F2 0F 5E /r DIVSD xmm1, xmm2/m64 AV/VSSE2Divide low double-precision floating-point value in xmm1 by low double-precision floating-point value in xmm2/m64. VEX.LIG.F2.0F.WIG 5E /r VDIVSD xmm1, xmm2, xmm3/m64 BV/VAVXDivide low double-precision floating-point value in xmm2 by low double-precision floating-point value in xmm3/m64. EVEX.LLIG.F2.0F.W1 5E /r VDIVSD xmm1 {k1}{z}, xmm2, xmm3/m64{er} CV/VAVX512FDivide low double-precision floating-point value in xmm2 by low double-precision floating-point value in xmm3/m64. Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (r, w)ModRM:r/m (r)NANA BNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)NA CTuple1 ScalarModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NA image/svg+xml Operation VDIVSD (EVEX encoded version) IF (EVEX.b = 1) AND SRC2 *is a register* THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; IF k1[0] or *no writemask* THENDEST[63:0] := SRC1[63:0] / SRC2[63:0] ELSE IF *merging-masking*; merging-masking THEN *DEST[63:0] remains unchanged* ELSE ; zeroing-masking THEN DEST[63:0] := 0 FI; FI; DEST[127:64] := SRC1[127:64] DEST[MAXVL-1:128] := 0 VDIVSD (VEX.128 encoded version) DEST[63:0] := SRC1[63:0] / SRC2[63:0] DEST[127:64] := SRC1[127:64] DEST[MAXVL-1:128] := 0 DIVSD (128-bit Legacy SSE version) DEST[63:0] := DEST[63:0] / SRC[63:0] DEST[MAXVL-1:64] (Unmodified) Intel C/C++ Compiler Intrinsic Equivalent VDIVSD __m128d _mm_mask_div_sd(__m128d s, __mmask8 k, __m128d a, __m128d b); VDIVSD __m128d _mm_maskz_div_sd( __mmask8 k, __m128d a, __m128d b); VDIVSD __m128d _mm_div_round_sd( __m128d a, __m128d b, int); VDIVSD __m128d _mm_mask_div_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int); VDIVSD __m128d _mm_maskz_div_round_sd( __mmask8 k, __m128d a, __m128d b, int); DIVSD __m128d _mm_div_sd (__m128d a, __m128d b); SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal Other Exceptions VEX-encoded instructions, see Table2-20, “Type 3 Class Exception Conditions”. EVEX-encoded instructions, see Table2-47, “Type E3 Class Exception Conditions”. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .