image/svg+xml CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point Values to Packed  Signed Doubleword Integer Values Instruction Operand Encoding Description Converts four, eight or sixteen packed single-precision floating-point values in the source operand to four, eight or  sixteen signed doubleword integers in the destination operand. When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result is larger than  the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is  masked, the indefinite integer value (80000000H) is returned. EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or  a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a  ZMM/YMM/XMM register conditionally updated with writemask k1.  VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination  operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are  zeroed. VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination  operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are  zeroed. 128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination  operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are  unmodified. Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD. Opcode/ Instruction Op /  En 64/32  bit Mode  Support CPUID  Feature  Flag Description F3 0F 5B /r CVTTPS2DQ xmm1, xmm2/m128 AV/VSSE2Convert four packed single-precision floating-point  values from xmm2/mem to four packed signed  doubleword values in xmm1 using truncation. VEX.128.F3.0F.WIG 5B /r VCVTTPS2DQ xmm1, xmm2/m128 AV/VAVXConvert four packed single-precision floating-point  values from xmm2/mem to four packed signed  doubleword values in xmm1 using truncation. VEX.256.F3.0F.WIG 5B /r VCVTTPS2DQ ymm1, ymm2/m256 AV/VAVXConvert eight packed single-precision floating-point  values from ymm2/mem to eight packed signed  doubleword values in ymm1 using truncation. EVEX.128.F3.0F.W0 5B /r VCVTTPS2DQ xmm1 {k1}{z},  xmm2/m128/m32bcst BV/VAVX512VL AVX512F Convert four packed single precision floating-point  values from xmm2/m128/m32bcst to four packed  signed doubleword values in xmm1 using truncation  subject to writemask k1. EVEX.256.F3.0F.W0 5B /r VCVTTPS2DQ ymm1 {k1}{z},  ymm2/m256/m32bcst BV/VAVX512VL AVX512F Convert eight packed single precision floating-point  values from ymm2/m256/m32bcst to eight packed  signed doubleword values in ymm1 using truncation  subject to writemask k1. EVEX.512.F3.0F.W0 5B /r VCVTTPS2DQ zmm1 {k1}{z},  zmm2/m512/m32bcst {sae} BV/VAVX512FConvert sixteen packed single-precision floating-point  values from zmm2/m512/m32bcst to sixteen packed  signed doubleword values in zmm1 using truncation  subject to writemask k1. Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (w)ModRM:r/m (r)NANA BFullModRM:reg (w)ModRM:r/m (r)NANA image/svg+xml Operation VCVTTPS2DQ (EVEX encoded versions) when src operand is a register (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[i+31:i]) ELSE  IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL]   := 0 VCVTTPS2DQ (EVEX encoded versions) when src operand is a memory source (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO 15 i := j * 32 IF k1[j] OR *no writemask* THEN  IF (EVEX.b = 1)  THEN DEST[i+31:i] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]) ELSE  DEST[i+31:i] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[i+31:i]) FI; ELSE  IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] :=   0 VCVTTPS2DQ (VEX.256 encoded version) DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]) DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]) DEST[95:64] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64]) DEST[127:96] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96) DEST[159:128] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[159:128]) DEST[191:160] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[191:160]) DEST[223:192] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[223:192]) DEST[255:224] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[255:224]) image/svg+xml VCVTTPS2DQ (VEX.128 encoded version) DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]) DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]) DEST[95:64] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64]) DEST[127:96] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96]) DEST[MAXVL-1:128] := 0 CVTTPS2DQ (128-bit Legacy SSE version) DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]) DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]) DEST[95:64] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64]) DEST[127:96] := Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96]) DEST[MAXVL-1:128] (unmodified) Intel C/C++ Compiler Intrinsic Equivalent VCVTTPS2DQ __m512i _mm512_cvttps_epi32( __m512 a); VCVTTPS2DQ __m512i _mm512_mask_cvttps_epi32( __m512i s, __mmask16 k, __m512 a); VCVTTPS2DQ __m512i _mm512_maskz_cvttps_epi32( __mmask16 k, __m512 a); VCVTTPS2DQ __m512i _mm512_cvtt_roundps_epi32( __m512 a, int sae); VCVTTPS2DQ __m512i _mm512_mask_cvtt_roundps_epi32( __m512i s, __mmask16 k, __m512 a, int sae); VCVTTPS2DQ __m512i _mm512_maskz_cvtt_roundps_epi32( __mmask16 k, __m512 a, int sae); VCVTTPS2DQ __m256i _mm256_mask_cvttps_epi32( __m256i s, __mmask8 k, __m256 a); VCVTTPS2DQ __m256i _mm256_maskz_cvttps_epi32( __mmask8 k, __m256 a); VCVTTPS2DQ __m128i _mm_mask_cvttps_epi32( __m128i s, __mmask8 k, __m128 a); VCVTTPS2DQ __m128i _mm_maskz_cvttps_epi32( __mmask8 k, __m128 a); VCVTTPS2DQ __m256i _mm256_cvttps_epi32 (__m256 a) CVTTPS2DQ __m128i _mm_cvttps_epi32 (__m128 a) SIMD Floating-Point Exceptions Invalid, Precision Other Exceptions VEX-encoded instructions, see Table2-19, “Type 2 Class Exception Conditions”. EVEX-encoded instructions, see Table2-46, “Type E2 Class Exception Conditions”. Additionally: #UDIf VEX.vvvv != 1111B or EVEX.vvvv != 1111B.          This UNOFFICIAL  reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual  by a dumb script.         There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .