image/svg+xml CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value Instruction Operand Encoding Description Converts a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the “convert-from” source operand to a double-precision floating-point value in the destination operand. The result is stored in the low quadword of the destination operand, and the high quadword left unchanged. When conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register. The second source operand can be a general-purpose register or a 32/64-bit memory location. The first source and destination operands are XMM registers. 128-bit Legacy SSE version: Use of the REX.W prefix promotes the instruction to 64-bit operands. The “convert- from” source operand (the second operand) is a general-purpose register or memory location. The destination is an XMM register Bits (MAXVL-1:64) of the corresponding destination register remain unchanged. VEX.128 and EVEX encoded versions: The “convert-from” source operand (the third operand) can be a general- purpose register or a memory location. The first source and destination operands are XMM registers. Bits (127:64) of the XMM register destination are copied from the corresponding bits in the first source operand. Bits (MAXVL- 1:128) of the destination register are zeroed. EVEX.W0 version: attempt to encode this instruction with EVEX embedded rounding is ignored. VEX.W1 and EVEX.W1 versions: promotes the instruction to use 64-bit input value in 64-bit mode. Software should ensure VCVTSI2SD is encoded with VEX.L=0. Encoding VCVTSI2SD with VEX.L=1 may encounter unpredictable behavior across different processor generations. Opcode/ Instruction Op / En 64/32 bit Mode Support CPUID Feature Flag Description F2 0F 2A /r CVTSI2SD xmm1, r32/m32 AV/VSSE2Convert one signed doubleword integer from r32/m32 to one double-precision floating-point value in xmm1. F2 REX.W 0F 2A /r CVTSI2SD xmm1, r/m64 AV/N.E.SSE2Convert one signed quadword integer from r/m64 to one double-precision floating-point value in xmm1. VEX.LIG.F2.0F.W0 2A /r VCVTSI2SD xmm1, xmm2, r/m32 BV/VAVXConvert one signed doubleword integer from r/m32 to one double-precision floating-point value in xmm1. VEX.LIG.F2.0F.W1 2A /r VCVTSI2SD xmm1, xmm2, r/m64 BV/N.E. 1 AVXConvert one signed quadword integer from r/m64 to one double-precision floating-point value in xmm1. EVEX.LLIG.F2.0F.W0 2A /r VCVTSI2SD xmm1, xmm2, r/m32 CV/VAVX512FConvert one signed doubleword integer from r/m32 to one double-precision floating-point value in xmm1. EVEX.LLIG.F2.0F.W1 2A /r VCVTSI2SD xmm1, xmm2, r/m64{er} CV/N.E. 1 NOTES: 1. VEX.W1/EVEX.W1 in non-64 bit is ignored; the instructions behaves as if the W0 version is used. AVX512FConvert one signed quadword integer from r/m64 to one double-precision floating-point value in xmm1. Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (w)ModRM:r/m (r)NANA BNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)NA CTuple1 ScalarModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NA image/svg+xml Operation VCVTSI2SD (EVEX encoded version) IF (SRC2 *is register*) AND (EVEX.b = 1) THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; IF 64-Bit Mode And OperandSize = 64 THEN DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC2[63:0]); ELSE DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC2[31:0]); FI; DEST[127:64] := SRC1[127:64] DEST[MAXVL-1:128] := 0 VCVTSI2SD (VEX.128 encoded version) IF 64-Bit Mode And OperandSize = 64 THEN DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC2[63:0]); ELSE DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC2[31:0]); FI; DEST[127:64] := SRC1[127:64] DEST[MAXVL-1:128] := 0 CVTSI2SD IF 64-Bit Mode And OperandSize = 64 THEN DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:0]); ELSE DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]); FI; DEST[MAXVL-1:64] (Unmodified) Intel C/C++ Compiler Intrinsic Equivalent VCVTSI2SD __m128d _mm_cvti32_sd(__m128d s, int a); VCVTSI2SD __m128d _mm_cvti64_sd(__m128d s, __int64 a); VCVTSI2SD __m128d _mm_cvt_roundi64_sd(__m128d s, __int64 a, int r); CVTSI2SD __m128d _mm_cvtsi64_sd(__m128d s, __int64 a); CVTSI2SD __m128d_mm_cvtsi32_sd(__m128d a, int b) SIMD Floating-Point Exceptions Precision Other Exceptions VEX-encoded instructions, see Table2-20, “Type 3 Class Exception Conditions” if W1; else see Table2-22, “Type 5 Class Exception Conditions”. EVEX-encoded instructions, see Table2-48, “Type E3NF Class Exception Conditions” if W1; else see Table2-59, “Type E10NF Class Exception Conditions”. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .