image/svg+xml CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed Signed Doubleword Integer Values Instruction Operand Encoding Description Converts four, eight or sixteen packed single-precision floating-point values in the source operand to four, eight or sixteen signed doubleword integers in the destination operand. When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register or the embedded rounding control bits. If a converted result cannot be represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (2 w -1, where w represents the number of bits in the destination format) is returned. EVEX encoded versions: The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM register conditionally updated with writemask k1. VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed. VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed. 128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified. VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD. Opcode/ Instruction Op / En 64/32 bit Mode Support CPUID Feature Flag Description 66 0F 5B /r CVTPS2DQ xmm1, xmm2/m128 AV/VSSE2Convert four packed single-precision floating-point values from xmm2/mem to four packed signed doubleword values in xmm1. VEX.128.66.0F.WIG 5B /r VCVTPS2DQ xmm1, xmm2/m128 AV/VAVXConvert four packed single-precision floating-point values from xmm2/mem to four packed signed doubleword values in xmm1. VEX.256.66.0F.WIG 5B /r VCVTPS2DQ ymm1, ymm2/m256 AV/VAVXConvert eight packed single-precision floating-point values from ymm2/mem to eight packed signed doubleword values in ymm1. EVEX.128.66.0F.W0 5B /r VCVTPS2DQ xmm1 {k1}{z}, xmm2/m128/m32bcst BV/VAVX512VL AVX512F Convert four packed single precision floating-point values from xmm2/m128/m32bcst to four packed signed doubleword values in xmm1 subject to writemask k1. EVEX.256.66.0F.W0 5B /r VCVTPS2DQ ymm1 {k1}{z}, ymm2/m256/m32bcst BV/VAVX512VL AVX512F Convert eight packed single precision floating-point values from ymm2/m256/m32bcst to eight packed signed doubleword values in ymm1 subject to writemask k1. EVEX.512.66.0F.W0 5B /r VCVTPS2DQ zmm1 {k1}{z}, zmm2/m512/m32bcst{er} BV/VAVX512FConvert sixteen packed single-precision floating-point values from zmm2/m512/m32bcst to sixteen packed signed doubleword values in zmm1 subject to writemask k1. Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (w)ModRM:r/m (r)NANA BFullModRM:reg (w)ModRM:r/m (r)NANA image/svg+xml Operation VCVTPS2DQ (encoded versions) when src operand is a register (KL, VL) = (4, 128), (8, 256), (16, 512) IF (VL = 512) AND (EVEX.b = 1) THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[i+31:i]) ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VCVTPS2DQ (EVEX encoded versions) when src operand is a memory source (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO 15 i := j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+31:i] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]) ELSE DEST[i+31:i] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[i+31:i]) FI; ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 image/svg+xml VCVTPS2DQ (VEX.256 encoded version) DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]) DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]) DEST[95:64] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64]) DEST[127:96] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96) DEST[159:128] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[159:128]) DEST[191:160] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[191:160]) DEST[223:192] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[223:192]) DEST[255:224] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[255:224]) VCVTPS2DQ (VEX.128 encoded version) DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]) DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]) DEST[95:64] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64]) DEST[127:96] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96]) DEST[MAXVL-1:128] := 0 CVTPS2DQ (128-bit Legacy SSE version) DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]) DEST[63:32] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]) DEST[95:64] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64]) DEST[127:96] := Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96]) DEST[MAXVL-1:128] (unmodified) Intel C/C++ Compiler Intrinsic Equivalent VCVTPS2DQ __m512i _mm512_cvtps_epi32( __m512 a); VCVTPS2DQ __m512i _mm512_mask_cvtps_epi32( __m512i s, __mmask16 k, __m512 a); VCVTPS2DQ __m512i _mm512_maskz_cvtps_epi32( __mmask16 k, __m512 a); VCVTPS2DQ __m512i _mm512_cvt_roundps_epi32( __m512 a, int r); VCVTPS2DQ __m512i _mm512_mask_cvt_roundps_epi32( __m512i s, __mmask16 k, __m512 a, int r); VCVTPS2DQ __m512i _mm512_maskz_cvt_roundps_epi32( __mmask16 k, __m512 a, int r); VCVTPS2DQ __m256i _mm256_mask_cvtps_epi32( __m256i s, __mmask8 k, __m256 a); VCVTPS2DQ __m256i _mm256_maskz_cvtps_epi32( __mmask8 k, __m256 a); VCVTPS2DQ __m128i _mm_mask_cvtps_epi32( __m128i s, __mmask8 k, __m128 a); VCVTPS2DQ __m128i _mm_maskz_cvtps_epi32( __mmask8 k, __m128 a); VCVTPS2DQ __ m256i _mm256_cvtps_epi32 (__m256 a) CVTPS2DQ __m128i _mm_cvtps_epi32 (__m128 a) SIMD Floating-Point Exceptions Invalid, Precision Other Exceptions VEX-encoded instructions, see Table2-19, “Type 2 Class Exception Conditions”. EVEX-encoded instructions, see Table2-46, “Type E2 Class Exception Conditions”. Additionally: #UDIf VEX.vvvv != 1111B or EVEX.vvvv != 1111B. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .