image/svg+xml CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values Instruction Operand Encoding Description Converts four, eight or sixteen packed signed doubleword integers in the source operand to four, eight or sixteen packed single-precision floating-point values in the destination operand. EVEX encoded versions: The source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1. VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operand is a YMM register. Bits (MAXVL-1:256) of the corresponding register destination are zeroed. VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding register destination are zeroed. 128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operand is an XMM register. The upper Bits (MAXVL-1:128) of the corresponding register destination are unmodi- fied. VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD. Opcode Instruction Op / En 64/32 bit Mode Support CPUID Feature Flag Description NP 0F 5B /r CVTDQ2PS xmm1, xmm2/m128 AV/VSSE2Convert four packed signed doubleword integers from xmm2/mem to four packed single-precision floating- point values in xmm1. VEX.128.0F.WIG 5B /r VCVTDQ2PS xmm1, xmm2/m128 AV/VAVXConvert four packed signed doubleword integers from xmm2/mem to four packed single-precision floating- point values in xmm1. VEX.256.0F.WIG 5B /r VCVTDQ2PS ymm1, ymm2/m256 AV/VAVXConvert eight packed signed doubleword integers from ymm2/mem to eight packed single-precision floating- point values in ymm1. EVEX.128.0F.W0 5B /r VCVTDQ2PS xmm1 {k1}{z}, xmm2/m128/m32bcst BV/VAVX512VL AVX512F Convert four packed signed doubleword integers from xmm2/m128/m32bcst to four packed single-precision floating-point values in xmm1with writemask k1. EVEX.256.0F.W0 5B /r VCVTDQ2PS ymm1 {k1}{z}, ymm2/m256/m32bcst BV/VAVX512VL AVX512F Convert eight packed signed doubleword integers from ymm2/m256/m32bcst to eight packed single-precision floating-point values in ymm1with writemask k1. EVEX.512.0F.W0 5B /r VCVTDQ2PS zmm1 {k1}{z}, zmm2/m512/m32bcst{er} BV/VAVX512FConvert sixteen packed signed doubleword integers from zmm2/m512/m32bcst to sixteen packed single- precision floating-point values in zmm1with writemask k1. Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (w)ModRM:r/m (r)NANA BFullModRM:reg (w)ModRM:r/m (r)NANA image/svg+xml Operation VCVTDQ2PS (EVEX encoded versions) when SRC operand is a register (KL, VL) = (4, 128), (8, 256), (16, 512) IF (VL = 512) AND (EVEX.b = 1) THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ; refer to Table 15-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); ; refer to Table 15-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 FI; FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[i+31:i]) ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VCVTDQ2PS (EVEX encoded versions) when SRC operand is a memory source (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+31:i] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]) ELSE DEST[i+31:i] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[i+31:i]) FI; ELSE IF *merging-masking*; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 image/svg+xml VCVTDQ2PS (VEX.256 encoded version) DEST[31:0] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]) DEST[63:32] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]) DEST[95:64] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64]) DEST[127:96] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[127:96) DEST[159:128] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[159:128]) DEST[191:160] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[191:160]) DEST[223:192] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[223:192]) DEST[255:224] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[255:224) DEST[MAXVL-1:256] := 0 VCVTDQ2PS (VEX.128 encoded version) DEST[31:0] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]) DEST[63:32] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]) DEST[95:64] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64]) DEST[127:96] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96) DEST[MAXVL-1:128] := 0 CVTDQ2PS (128-bit Legacy SSE version) DEST[31:0] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]) DEST[63:32] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]) DEST[95:64] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64]) DEST[127:96] := Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96) DEST[MAXVL-1:128] (unmodified) Intel C/C++ Compiler Intrinsic Equivalent VCVTDQ2PS __m512 _mm512_cvtepi32_ps( __m512i a); VCVTDQ2PS __m512 _mm512_mask_cvtepi32_ps( __m512 s, __mmask16 k, __m512i a); VCVTDQ2PS __m512 _mm512_maskz_cvtepi32_ps( __mmask16 k, __m512i a); VCVTDQ2PS __m512 _mm512_cvt_roundepi32_ps( __m512i a, int r); VCVTDQ2PS __m512 _mm512_mask_cvt_roundepi_ps( __m512 s, __mmask16 k, __m512i a, int r); VCVTDQ2PS __m512 _mm512_maskz_cvt_roundepi32_ps( __mmask16 k, __m512i a, int r); VCVTDQ2PS __m256 _mm256_mask_cvtepi32_ps( __m256 s, __mmask8 k, __m256i a); VCVTDQ2PS __m256 _mm256_maskz_cvtepi32_ps( __mmask8 k, __m256i a); VCVTDQ2PS __m128 _mm_mask_cvtepi32_ps( __m128 s, __mmask8 k, __m128i a); VCVTDQ2PS __m128 _mm_maskz_cvtepi32_ps( __mmask8 k, __m128i a); CVTDQ2PS __m256 _mm256_cvtepi32_ps (__m256i src) CVTDQ2PS __m128 _mm_cvtepi32_ps (__m128i src) SIMD Floating-Point Exceptions Precision Other Exceptions VEX-encoded instructions, see Table2-19, “Type 2 Class Exception Conditions”. EVEX-encoded instructions, see Table2-46, “Type E2 Class Exception Conditions”. Additionally: #UDIf VEX.vvvv != 1111B or EVEX.vvvv != 1111B. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .