image/svg+xmlCMPSD—Compare Scalar Double-Precision Floating-Point ValueInstruction Operand EncodingDescriptionCompares the low double-precision floating-point values in the second source operand and the first source operand and returns the result of the comparison to the destination operand. The comparison predicate operand (imme-diate operand) specifies the type of comparison performed. 128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The second source operand (second operand) can be an XMM register or 64-bit memory location. Bits (MAXVL-1:64) of the corresponding YMM destination register remain unchanged. The comparison result is a quadword mask of all 1s (comparison true) or all 0s (comparison false). VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source operand (third operand) can be an XMM register or a 64-bit memory location. The result is stored in the low quad-word of the destination operand; the high quadword is filled with the contents of the high quadword of the first source operand. Bits (MAXVL-1:128) of the destination ZMM register are zeroed. The comparison result is a quad-word mask of all 1s (comparison true) or all 0s (comparison false). EVEX encoded version: The first source operand (second operand) is an XMM register. The second source operand can be a XMM register or a 64-bit memory location. The destination operand (first operand) is an opmask register. The comparison result is a single mask bit of 1 (comparison true) or 0 (comparison false), written to the destination starting from the LSB according to the writemask k2. Bits (MAX_KL-1:128) of the destination register are cleared.The comparison predicate operand is an 8-bit immediate: For instructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see Table 3-1). Bits 5 through 7 of the immediate are reserved. For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see the first 8 rows of Table 3-1). Bits 3 through 7 of the immediate are reserved. The unordered relationship is true when at least one of the two source operands being compared is a NaN; the ordered relationship is true when neither source operand is a NaN. A subsequent computational instruction that uses the mask result in the destination operand as an input operand will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN. Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison) Opcode/InstructionOp / En64/32 bit Mode SupportCPUID Feature FlagDescriptionF2 0F C2 /r ibCMPSD xmm1, xmm2/m64, imm8AV/VSSE2Compare low double-precision floating-point value in xmm2/m64 and xmm1 using bits 2:0 of imm8 as comparison predicate.VEX.LIG.F2.0F.WIG C2 /r ibVCMPSD xmm1, xmm2, xmm3/m64, imm8BV/VAVXCompare low double-precision floating-point value in xmm3/m64 and xmm2 using bits 4:0 of imm8 as comparison predicate.EVEX.LLIG.F2.0F.W1 C2 /r ibVCMPSD k1 {k2}, xmm2, xmm3/m64{sae}, imm8CV/VAVX512FCompare low double-precision floating-point value in xmm3/m64 and xmm2 using bits 4:0 of imm8 as comparison predicate with writemask k2 and leave the result in mask register k1.Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4ANAModRM:reg (r, w)ModRM:r/m (r)Imm8NABNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)Imm8CTuple1 ScalarModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)Imm8

image/svg+xmlor by using software emulation. When using software emulation, the program must swap the operands (copying registers when necessary to protect the data that will now be in the destination), and then perform the compare using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7 (Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A) under the heading Emulation. Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand CMPSD instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 3-6. Compiler should treat reserved Imm8 values as illegal syntax.:The greater-than relations that the processor does not implement require more than one instruction to emulate in software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to the correct destination register and that the source operand is left intact.) Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 3-7, soft-ware emulation is no longer needed. Compilers and assemblers may implement the following three-operand pseudo-ops in addition to the four-operand VCMPSD instruction. See Table 3-7, where the notations of reg1 reg2, and reg3 represent either XMM registers or YMM registers. Compiler should treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-face. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPSD instructions in a similar fashion by extending the syntax listed in Table3-7.:Table 3-6. Pseudo-Op and CMPSD ImplementationPseudo-OpCMPSD ImplementationCMPEQSD xmm1, xmm2CMPSD xmm1, xmm2, 0CMPLTSD xmm1, xmm2CMPSD xmm1, xmm2, 1CMPLESD xmm1, xmm2CMPSD xmm1, xmm2, 2CMPUNORDSD xmm1, xmm2CMPSD xmm1, xmm2, 3CMPNEQSD xmm1, xmm2CMPSD xmm1, xmm2, 4CMPNLTSD xmm1, xmm2CMPSD xmm1, xmm2, 5CMPNLESD xmm1, xmm2CMPSD xmm1, xmm2, 6CMPORDSD xmm1, xmm2CMPSD xmm1, xmm2, 7Table 3-7. Pseudo-Op and VCMPSD ImplementationPseudo-OpCMPSD ImplementationVCMPEQSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 0VCMPLTSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 1VCMPLESD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 2VCMPUNORDSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 3VCMPNEQSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 4VCMPNLTSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 5VCMPNLESD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 6VCMPORDSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 7VCMPEQ_UQSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 8VCMPNGESD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 9VCMPNGTSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 0AHVCMPFALSESD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 0BHVCMPNEQ_OQSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 0CHVCMPGESD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 0DH

image/svg+xmlSoftware should ensure VCMPSD is encoded with VEX.L=0. Encoding VCMPSD with VEX.L=1 may encounter unpre-dictable behavior across different processor generations.OperationCASE (COMPARISON PREDICATE) OF0: OP3 := EQ_OQ; OP5 := EQ_OQ;1: OP3 := LT_OS; OP5 := LT_OS;2: OP3 := LE_OS; OP5 := LE_OS;3: OP3 := UNORD_Q; OP5 := UNORD_Q;4: OP3 := NEQ_UQ; OP5 := NEQ_UQ;5: OP3 := NLT_US; OP5 := NLT_US;6: OP3 := NLE_US; OP5 := NLE_US;7: OP3 := ORD_Q; OP5 := ORD_Q;8: OP5 := EQ_UQ;9: OP5 := NGE_US;10: OP5 := NGT_US;11: OP5 := FALSE_OQ;12: OP5 := NEQ_OQ;13: OP5 := GE_OS;14: OP5 := GT_OS;15: OP5 := TRUE_UQ;16: OP5 := EQ_OS;17: OP5 := LT_OQ;18: OP5 := LE_OQ;19: OP5 := UNORD_S;20: OP5 := NEQ_US;21: OP5 := NLT_UQ;VCMPGTSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 0EHVCMPTRUESD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 0FHVCMPEQ_OSSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 10HVCMPLT_OQSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 11HVCMPLE_OQSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 12HVCMPUNORD_SSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 13HVCMPNEQ_USSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 14HVCMPNLT_UQSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 15HVCMPNLE_UQSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 16HVCMPORD_SSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 17HVCMPEQ_USSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 18HVCMPNGE_UQSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 19HVCMPNGT_UQSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 1AHVCMPFALSE_OSSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 1BHVCMPNEQ_OSSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 1CHVCMPGE_OQSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 1DHVCMPGT_OQSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 1EHVCMPTRUE_USSD reg1, reg2, reg3VCMPSD reg1, reg2, reg3, 1FHTable 3-7. Pseudo-Op and VCMPSD ImplementationPseudo-OpCMPSD Implementation

image/svg+xml22: OP5 := NLE_UQ;23: OP5 := ORD_S;24: OP5 := EQ_US;25: OP5 := NGE_UQ;26: OP5 := NGT_UQ;27: OP5 := FALSE_OS;28: OP5 := NEQ_OS;29: OP5 := GE_OQ;30: OP5 := GT_OQ;31: OP5 := TRUE_US;DEFAULT: ReservedESAC;VCMPSD (EVEX encoded version) CMP0 := SRC1[63:0] OP5 SRC2[63:0];IF k2[0] or *no writemask*THENIF CMP0 = TRUETHEN DEST[0] := 1;ELSE DEST[0] := 0; FI;ELSE DEST[0] := 0; zeroing-masking onlyFI;DEST[MAX_KL-1:1] := 0CMPSD (128-bit Legacy SSE version)CMP0 := DEST[63:0] OP3 SRC[63:0];IF CMP0 = TRUETHEN DEST[63:0] := FFFFFFFFFFFFFFFFH;ELSE DEST[63:0] := 0000000000000000H; FI;DEST[MAXVL-1:64] (Unmodified)VCMPSD (VEX.128 encoded version)CMP0 := SRC1[63:0] OP5 SRC2[63:0];IF CMP0 = TRUETHEN DEST[63:0] := FFFFFFFFFFFFFFFFH;ELSE DEST[63:0] := 0000000000000000H; FI;DEST[127:64] := SRC1[127:64]DEST[MAXVL-1:128] := 0Intel C/C++ Compiler Intrinsic EquivalentVCMPSD __mmask8 _mm_cmp_sd_mask( __m128d a, __m128d b, int imm);VCMPSD __mmask8 _mm_cmp_round_sd_mask( __m128d a, __m128d b, int imm, int sae);VCMPSD __mmask8 _mm_mask_cmp_sd_mask( __mmask8 k1, __m128d a, __m128d b, int imm);VCMPSD __mmask8 _mm_mask_cmp_round_sd_mask( __mmask8 k1, __m128d a, __m128d b, int imm, int sae);(V)CMPSD __m128d _mm_cmp_sd(__m128d a, __m128d b, const int imm)SIMD Floating-Point ExceptionsInvalid if SNaN operand, Invalid if QNaN and predicate as listed in Table3-1 Denormal.Other ExceptionsVEX-encoded instructions, see Table2-20, “Type 3 Class Exception Conditions”.EVEX-encoded instructions, see Table2-47, “Type E3 Class Exception Conditions”.

This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.