image/svg+xml ADDPD—Add Packed Double-Precision Floating-Point Values Instruction Operand Encoding Description Adds two, four or eight packed double-precision floating-point values from the first source operand to the second source operand, and stores the packed double-precision floating-point result in the destination operand. EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1. VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed. VEX.128 encoded version: the first source operand is a XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed. 128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti- nation is not distinct from the first source XMM register and the upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified. Opcode/ Instruction Op / En 64/32 bit Mode Support CPUID Feature Flag Description 66 0F 58 /r ADDPD xmm1, xmm2/m128 AV/VSSE2Add packed double-precision floating-point values from xmm2/mem to xmm1 and store result in xmm1. VEX.128.66.0F.WIG 58 /r VADDPD xmm1,xmm2, xmm3/m128 BV/VAVXAdd packed double-precision floating-point values from xmm3/mem to xmm2 and store result in xmm1. VEX.256.66.0F.WIG 58 /r VADDPD ymm1, ymm2, ymm3/m256 BV/VAVXAdd packed double-precision floating-point values from ymm3/mem to ymm2 and store result in ymm1. EVEX.128.66.0F.W1 58 /r VADDPD xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcst CV/VAVX512VL AVX512F Add packed double-precision floating-point values from xmm3/m128/m64bcst to xmm2 and store result in xmm1 with writemask k1. EVEX.256.66.0F.W1 58 /r VADDPD ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst CV/VAVX512VL AVX512F Add packed double-precision floating-point values from ymm3/m256/m64bcst to ymm2 and store result in ymm1 with writemask k1. EVEX.512.66.0F.W1 58 /r VADDPD zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst{er} CV/VAVX512FAdd packed double-precision floating-point values from zmm3/m512/m64bcst to zmm2 and store result in zmm1 with writemask k1. Op/EnTuple TypeOperand 1Operand 2Operand 3Operand 4 ANAModRM:reg (r, w)ModRM:r/m (r)NANA BNAModRM:reg (w)VEX.vvvv (r)ModRM:r/m (r)NA CFullModRM:reg (w)EVEX.vvvv (r)ModRM:r/m (r)NA image/svg+xml Operation VADDPD (EVEX encoded versions) when src2 operand is a vector register (KL, VL) = (2, 128), (4, 256), (8, 512) IF (VL = 512) AND (EVEX.b = 1) THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := SRC1[i+63:i] + SRC2[i+63:i] ELSE IF *merging-masking*; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VADDPD (EVEX encoded versions) when src2 operand is a memory source (KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+63:i] := SRC1[i+63:i] + SRC2[63:0] ELSE DEST[i+63:i] := SRC1[i+63:i] + SRC2[i+63:i] FI; ELSE IF *merging-masking*; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VADDPD (VEX.256 encoded version) DEST[63:0] := SRC1[63:0] + SRC2[63:0] DEST[127:64] := SRC1[127:64] + SRC2[127:64] DEST[191:128] := SRC1[191:128] + SRC2[191:128] DEST[255:192] := SRC1[255:192] + SRC2[255:192] DEST[MAXVL-1:256] := 0 . image/svg+xml VADDPD (VEX.128 encoded version) DEST[63:0] := SRC1[63:0] + SRC2[63:0] DEST[127:64] := SRC1[127:64] + SRC2[127:64] DEST[MAXVL-1:128] := 0 ADDPD (128-bit Legacy SSE version) DEST[63:0] := DEST[63:0] + SRC[63:0] DEST[127:64] := DEST[127:64] + SRC[127:64] DEST[MAXVL-1:128] (Unmodified) Intel C/C++ Compiler Intrinsic Equivalent VADDPD __m512d _mm512_add_pd (__m512d a, __m512d b); VADDPD __m512d _mm512_mask_add_pd (__m512d s, __mmask8 k, __m512d a, __m512d b); VADDPD __m512d _mm512_maskz_add_pd (__mmask8 k, __m512d a, __m512d b); VADDPD __m256d _mm256_mask_add_pd (__m256d s, __mmask8 k, __m256d a, __m256d b); VADDPD __m256d _mm256_maskz_add_pd (__mmask8 k, __m256d a, __m256d b); VADDPD __m128d _mm_mask_add_pd (__m128d s, __mmask8 k, __m128d a, __m128d b); VADDPD __m128d _mm_maskz_add_pd (__mmask8 k, __m128d a, __m128d b); VADDPD __m512d _mm512_add_round_pd (__m512d a, __m512d b, int); VADDPD __m512d _mm512_mask_add_round_pd (__m512d s, __mmask8 k, __m512d a, __m512d b, int); VADDPD __m512d _mm512_maskz_add_round_pd (__mmask8 k, __m512d a, __m512d b, int); ADDPD __m256d _mm256_add_pd (__m256d a, __m256d b); ADDPD __m128d _mm_add_pd (__m128d a, __m128d b); SIMD Floating-Point Exceptions Overflow, Underflow, Invalid, Precision, Denormal Other Exceptions VEX-encoded instruction, see Table2-19, “Type 2 Class Exception Conditions”. EVEX-encoded instruction, see Table2-46, “Type E2 Class Exception Conditions”. This UNOFFICIAL reference was generated from the official Intel® 64 and IA-32 Architectures Software Developer’s Manual by a dumb script. There is no guarantee that some parts aren't mangled or broken and is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .